Zahlenverständnis bei Tieren

Zahlenverständnis bei Tieren

Ein Zahlenverständnis bei Tieren ist in mehreren, von einander unabhängigen verhaltensbiologischen Experimenten nachgewiesen worden. Insbesondere einige in Japan und in den USA mit Schimpansen – den nächsten Verwandten des Menschen − durchgeführte Studien lassen den Schluss zu, dass einfache mathematische Fähigkeiten nicht auf den Menschen beschränkt sind. Der Nachweis, dass Tiere unterschiedlicher Arten fähig sind, Mengen (und einige von ihnen sogar Zahlen) zu unterscheiden, könnte, wenn eines Tages hinreichend viele Studien vorliegen sollten, einen Hinweis darauf geben, wie sich die Fähigkeit zum Rechnen im Verlauf der Stammesgeschichte der Arten entwickelt hat.

Exaktes Rechnen und die Anwendung komplexer mathematischer Formeln sind zwar kulturelle Leistungen und kommen vermutlich nicht ohne die Fähigkeit zum Benutzen einer Sprache aus. Ein Gespür für mehr oder weniger sowie die Fähigkeit, die Größe einer Menge zu schätzen, sind hingegen nicht an Sprache gekoppelt. Das Unterscheiden von Mengen unterschiedlicher Größe dürfte sogar eine der elementarsten Voraussetzungen dafür sein, dass Tiere zum Beispiel bei der Futtersuche angemessen auf ihre Umwelt reagieren können.

Inhaltsverzeichnis

Erste Studien

Untersuchungen zum Lernvermögen von Tieren wurden bereits vor der Etablierung des akademischen Faches Tierpsychologie durchgeführt und bildeten damals die Brücke zur Psychologie des Menschen.

„Kluge Hunde“

Eine auch nach heutigen Maßstäben sehr sorgfältige Verhaltensanalyse des „denkenden Hundes Rolf von Mannheim“ wurde beispielsweise im August 1916 in der Münchener Medizinischen Wochenschrift publiziert. [1] Jener Rolf galt zuvor – auch nach Ansicht „einer größeren Anzahl von bedeutenden Psychologen“ – als befähigt, sich mit Hilfe eines „Klopfalphabetes“ (einer Art Morsealphabet) mit den Menschen zu verständigen. Angeblich konnte der Hund rechnen und lesen, Briefe und Gedichte diktieren, ja sogar seine Autobiografie verfassen.

Gegen solche angeblichen Wundertiere musste sich die neu entstehende Tierpsychologie in den 1920er- und 1930er-Jahren den Rang einer ernstzunehmenden Wissenschaft erst mühsam erkämpfen, da ihre Tierexperimente und -dressuren gewissermaßen in Konkurrenz standen zu pseudowissenschaftlichen Jahrmarktsdarbietungen. Zu besonderer Bekanntheit brachte es der Kluge Hans, ein Pferd, von dem es hieß, es könne zählen. Es stellte sich jedoch heraus, dass das Tier nur hochsensibel auf Gesichtsausdrücke und Körperhaltungen von Menschen reagierte. Bernhard Hassenstein schrieb 1974 [2] in seinem Nachruf auf Otto Koehler:

„Besonderes Aufsehen erregten die so genannten klugen Tiere: die Elberfelder Pferde, sowie Rolf, Lumpi, Fips, Kurwenal, Isolde und – bis 1938 – weitere rund 80 Hunde, [3] die scheinbar jedes Menschenwort verstanden, rechneten, Wurzeln zogen und buchstabierten. Auf die Frage eines Theologiepropfessors: Welches ist deine Weltanschauung? antwortete der Dackel Kurwenal: Meine ist die Eure! – Dass diese Wundertiere nur so lange klopften oder bellten, bis ihnen ihre Besitzer, meistens unbewusst, ein Zeichen gaben aufzuhören, ihnen also ihre eigenen Antworten diktierten, war mehrfach erwiesen. Um so entschiedener setzten sich die Gekränkten für ihre Lieblinge ein, und selbst ein Professor der Zoologie diskutierte mit Überzeugung ‚Die zahlensprechenden Hunde als Domestikationserscheinung…‘“

„Zähl-Versuche“ mit Vögeln

Otto Koehler war der erste, der ab 1928 in zahlreichen Veröffentlichungen „Zähl-Versuche“ speziell von Vögeln dokumentierte, die er wiederholt mit naturwissenschaftlichen, exakten Methoden untersuchte. So lernten Tauben und Wellensittiche beispielsweise, je nach verschiedenfarbigen Anweisern, entweder 2 oder 4 Köder aufzunehmen. Einem gezähmten Raben brachte Koehler bei, unter mehreren Gefäßen stets dasjenige auszuwählen, auf dessen Deckel sich fünf Punkte befanden, wobei Form, Größe und Lage der Punkte von Versuch zu Versuch verändert wurden.[4] Ferner lernten Eichhörnchen, unter mehreren Deckeln mit gleicher Punktzahl den einzig anderen zu wählen. Der Graupapagei Jako reagierte auf akustische und visuelle Reize, indem er beispielsweise nach 3 Lichtblitzen 3 Köder aus den dargebotenen Schälchen entnahm, ferner unterschied er Ein- von Zweiklängen.

Otto Koehler zufolge reichte das Unterscheiden von Anzahlen stets bis zu bestimmten oberen Grenzen: bei Tauben 5, bei Wellensittichen und Dohlen 6, bei Amazonenpapageien, Elstern und Kolkraben 7, beim Graupapagei 8. Bernhard Hassenstein leitete aus diesen – später von anderen Forschern im Wesentlichen bestätigten – Daten 1974 ab, dass das Vermögen, Anzahlen zu unterscheiden, bei Menschen und Tieren „einer gemeinsamen Wurzel entstammt“, da unter gleichartigen Versuchsbedingungen „Menschen etwa dasselbe leisten wie diese Tiere.“ [5]

Frühe Versuche mit Ratten

Die Experimente Otto Koehlers mit Vögeln wurden in den 1930er- und 1940er-Jahren von anderen Forschergruppen nicht reproduziert, was zum Teil eine Folge des Zweiten Weltkriegs war, da kaum irgendwo eine Neigung bestand, die Glaubwürdigkeit deutscher Forscher zu überprüfen. Vor allem in den USA war die Verhaltensforschung zudem durch behavioristische Forschungsansätze geprägt, die zunächst kein Interesse an Fragestellungen zu angeborenen, anscheinend kognitiven Leistungen von Tieren aufkommen ließen. Dennoch war es dann aber gerade einer der Pioniere des aus dem Behaviorismus abgeleiteten, so genannten programmierten Lernens, der US-amerikanische Psychologe Francis Mechner von der Columbia University, der Anfang der 1960er-Jahre ein überzeugendes Nachweisverfahren zum Unterscheiden von Mengen entwickelte, und zwar bei Ratten.[6]

Mechner schloss jeden möglichen Einfluss des Versuchsleiters auf das Verhalten der Testtiere dadurch aus, dass er eine so genannte Skinner-Box benutzte. Hungrige Ratten fanden in dieser geschlossenen Versuchsapparatur zwei Hebel vor, die sie mit Schnauze oder Pfoten drücken konnten. Wurde Hebel 2 gedrückt, gab ein Automat ein wenig Futter frei – allerdings nur dann, wenn zuvor auch Hebel 1 gedrückt worden war. In unterschiedlichen Versuchsansätzen wurde die Zahl der nötigen Hebeldrücke auf Hebel 1 variiert: Einige Tiere erhielten ihre Futterbelohnung erst, wenn sie zum Beispiel viermal Hebel 1 und danach Hebel 2 drückten, andere Tiere mussten achtmal Hebel 1 und dann erst Hebel 2 drücken, um etwas Futter zu erhalten.

Nach einigem Training drückten die Testtiere tatsächlich im Mittel vier- bzw. achtmal Hebel 1 und dann erst Hebel 2; auch 12- und 16-faches Hebeldrücken konnten ihnen beigebracht werden, wobei aber nicht jedes Testtier immer genau die vom Versuchsleiter vorgegebene Anzahl drückte. Rund 75 Prozent der 4er-Gruppe drückten drei bis sechs Mal den Hebel, in der 8er-Gruppe drückten etwa 75 Prozent der Testtiere sieben bis elf Mal den Hebel. Hieraus kann man ableiten, dass Ratten nur relativ grob eine bestimmte, erforderliche Anzahl von Aktionen erlernen können. Um auszuschließen, dass die Testtiere statt der Anzahl der Hebeldrücke eine bestimmte Zeitdauer kontinuierlichen Hebeldrückens lernten, wurden unterschiedlich hungrige Ratten getestet: Je hungriger die Tiere waren, desto hektischer drückten sie zwar die Hebel, ohne dass sich dies aber auf die Anzahl der Hebeldrücke auswirkte.

Andere Ratten wurden in einem Tunnelsystem darauf dressiert, jeweils die vierte Abzweigung nach links zu wählen, und zwar unabhängig von den Abständen zwischen den Abzweigungen.[7]

Zwei Forscher der Brown University, Russell Church und Warren Meck, veröffentlichten 1984 eine Studie, die nahelegt, dass Ratten nicht nur lernen können, eine bestimmte Anzahl von Hebeldrücken in einer bestimmten Situation auszuführen. Vielmehr können sie das Gelernte auch auf eine neue Situation übertragen; vermenschlichend ausgedrückt könnte man sagen: Die Tiere verallgemeinern das gelernte Verhalten. Die Forscher brachten den Tieren zunächst bei, nach zwei Tönen den linken Hebel zu drücken und nach vier Tönen den rechten. Danach lernten die Tiere zusätzlich, nach zwei Lichtblitzen den linken Hebel zu drücken und nach vier Lichtblitzen den rechten. Schließlich wurden den Ratten während einiger Tests sowohl Töne als auch Lichtblitze präsentiert, und die Ratten drückten den linken Hebel auch dann, wenn ihnen ein Lichtblitz plus ein Ton bzw. den rechten, wenn zwei Lichtblitze plus zwei Töne dargeboten wurden.[8]

Honigbienen

Honigbienen (Apis mellifera) sind bekannt dafür, dass sie sich an Landmarken orientieren, wenn sie wiederholt ertragreiche Futterpflanzen anfliegen. Forscherinnen der Australian National University trainierten Bienen darauf, in einen Tunnel zu fliegen, in dem gelbe Striche oder Punkte als Markierung für eine bestimmte Anzahl von Futterstellen dienten. Die Versuchsbienen lernten, eine bestimmte Futterstelle (an der ersten, zweiten oder dritten usw. Markierung) anzufliegen, wobei die Abstände zwischen den Markierungen und die Form der Markierungen veränderlich war. Der eigentliche Test bestand darin, dass die trainierten Bienen in den Tunnel flogen, ohne dass an der gewohnten Futterstelle Futter bereit lag. Die Tests ergaben, dass Bienen sich die Anzahl zu überfliegender Landmarken – unabhängig von deren Form und deren Entfernung zueinander – merken können, jedoch nicht mehr als vier Landmarken. [9]

Ein gemeinsames Experiment von Forschern der Australian National University und der Würzburger Arbeitsgruppe von Jürgen Tautz ergab zudem, dass Honigbienen Mengen von bis zu vier Symbolen unterscheiden können, nicht aber größere Mengen wie vier gegen fünf oder vier gegen sechs Symbole.[10] Die Bienen lernten zunächst, dass hinter einer Tafel, auf der zwei blaue Punkte abgebildet waren, eine Belohnung (Zuckerwasser) versteckt war. Den so konditionierten Testtieren wurde dann zugleich eine Tafel mit zwei Symbolen und eine weitere Tafel mit beispielsweise vier Symbolen zur Auswahl gestellt: Die trainierten Tiere flogen jeweils die Tafel mit den zwei Symbolen an. In weiteren Experimenten konnten die Bienen auf Mengen bis zu vier Symbole konditioniert werden. Außerdem wurden Testtieren, die auf eine bestimmte Menge blauer Punkte konditioniert waren, beispielsweise Tafeln mit gelben Sterne oder grünen Blättern zur Auswahl gestellt: Auch unter solchen veränderten Bedingungen blieb die Unterscheidungsfähigkeit für die zuvor gelernte Menge erhalten. Die Autoren erläuterten, dass ihre Studie erstmals bei Insekten die Fähigkeit zum Unterscheiden von Mengen nachgewiesen habe.

Amphibien

Salamander der Art Plethodon cinereus, also Amphibien, können unterschiedlich große Mengen von einander unterscheiden. Dies geht aus einer Studie hervor, die eine Forschergruppe um Claudia Uller[11] von der University of Louisiana at Lafayette im Jahr 2003 in der Zeitschrift Animal Cognition publizierte.[12] Den Testtieren wurde jeweils gleichzeitig in zwei Glasröhren eine unterschiedlich große Anzahl von Fruchtfliegen als Futter dargeboten, zum Beispiel eine Fliege im einen Röhrchen und zwei Fliegen im anderen Röhrchen. Die Testtiere waren ohne vorheriges Training in der Lage, diese unterschiedlich großen Futtermengen von einander zu unterscheiden und das Röhrchen mit der größeren Anzahl Fliegen anzusteuern. Sie waren in der Lage, das Verhältnis 1:2 und 2:3 zu unterscheiden, nicht aber das Verhältnis 3:4 und 4:6.

Die Forscher deuten die Ergebnisse ihrer Arbeit als Ausdruck einer im Tierreich weit verbreiteten Tendenz, jeweils die größere Futtermenge aufzusuchen. Diese Neigung sei angeboren, da sie ohne Übung auftrete und setze mindestens voraus, dass eine größere Futtermenge von einer kleineren unterschieden werden könne. Bei kleinen Mengen beruhe diese Unterscheidungsfähigkeit aber nicht auf bloßem Abschätzen, sondern auf genauem Unterscheiden der Unterschiede. Da das Verhältnis 2:3 unterschieden werde, nicht aber das Verhältnis 4:6 gehen die Forscher davon aus, dass tatsächlich die genaue Anzahl der Objekte (2 oder 3) das Verhalten der Tiere beeinflusste und nicht allein das mengenmäßige Verhältnis der Futtertiere in den beiden Glasröhrchen. Bei Salamandern scheint die zuverlässig unterscheidbare Anzahl von Objekten also bei maximal 3 zu liegen.

Vögel

Tauben

Auch aus Experimenten an Tauben ist bekannt, dass sie kleine Mengen präziser von einander unterscheiden als große Mengen. Der kanadische Forscher William Roberts analysierte daher eine analoge Form der Reizverarbeitung: das Verhalten in Abhängigkeit von der Dauer eines Reizes.[13] Er dressierte Tauben darauf, gegen einen roten Hebel zu picken, wenn eine Lichtquelle kurz (z. B. 1 Sekunde) leuchtete. Wenn die Lichtquelle aber lang (z. B. 16 Sekunden) leuchtete, mussten sie gegen einen grünen Hebel picken. Man hätte nun erwarten können, dass bei mittlerer Leuchtdauer von 8 oder 9 Sekunden von kurz auf lang (d.h. vom roten auf den grünen Hebel) gewechselt wird oder dass die Testtiere verwirrt sind und nur rein zufällig mal gegen rot und gegen grün picken. Tatsächlich geschah der Wechsel aber bei 4 Sekunden. Ferner wurde beobachtet, dass die Tiere eine Lichtdauer von 1 zu 4 Sekunden besser unterscheiden konnten als eine Lichtdauer von 13 zu 16 Sekunden, während sie 9 gegen 10 Sekunden besser unterscheiden konnten als 7 zu 8 Sekunden. Der Forscher deutete diese Befunde dahingehend, dass eine Zeitspanne im Gehirn der Tauben nicht gleichförmig (linear) verarbeitet wird, sondern gewissermaßen logarithmisch. Würden die Tauben Zeitintervalle linear verarbeiten, müssten sie 1- oder 4-Sekunden-Intervalle jeweils gleich genau unterscheiden können. Bei einer logarithmus-ähnlichen Reizverarbeitung hingegen würden ein 13:16-Intervall kleiner erscheinen als ein 1:4-Intervall, was die beobachtete Ungenauigkeit beim Unterscheiden des 13:16-Intervalls im Vergleich zum 1:4-Intervall erklären würde.

Langbeinschnäpper

Frei lebende neuseeländische Langbeinschnäpper (Petroica australis) können einer Studie von Forschern der Victoria University zufolge Mengen wie beispielsweise 1 gegen 2, 2 gegen 3 und 4 gegen 6 unterscheiden.[14] Forscher der Arbeitsgruppe von Simon Hunt hatten in freier Natur 14 Langbeinschnäppern jeweils zeitgleich zwei unterschiedliche Mengen von Würmern zum Fressen dargeboten, worauf die Vögel mit hoher Treffsicherheit das Versteck mit der größeren Futtermenge aufsuchten. Bei der Alternative 1 Wurm gegen 2 Würmer wurden in fast 90 Prozent der Tests zunächst die 2 Würmer gefressen. Bei den Alternativen 2 gegen 3, 3 gegen 4 und 4 gegen 8 lag die Trefferquote noch bei 80 Prozent. Erst bei höheren Kombinationen (wie 6 gegen 8) näherte sich die Trefferquote dem Zufallswert von 50 Prozent. Die Vögel konnten jeweils beobachten, welche Anzahl von Würmern in welches Testgefäß gelegt wurde.

In einem zweiten Test wurden bestimmte unterschiedliche Mengen von Würmern in die Testgefäße gesteckt, einige davon verschwanden jedoch durch eine Falltür aus dem Gefäß. Anschließend zeigte sich erneut, dass die Vögel zunächst das Gefäß mit der anfangs größeren Wurmzahl anflogen. Sie hielten sich an diesem Gefäß jedoch beispielsweise viermal so lange auf, wenn zunächst 2 Würmer darin gelegen hatten, die Vögel aber nur einen fanden, als wenn von Beginn an nur 1 Wurm darin abgelegt worden war. Die Forscher schlossen daraus, dass die Tiere tatsächlich mitgezählt und eine bestimmte Menge an Würmern erwartet hatten.

Graupapageien

Die Fähigkeiten von Graupapageien, unterschiedlich große Mengen von einander zu unterscheiden, untersucht seit mehr als 25 Jahren die US-amerikanische Wissenschaftlerin Irene Pepperberg. Ihr Papagei Alex (als Jungtier erworben 1977, gestorben 2007) lernte unter anderem, 50 ihm dargebotene Objekte korrekt durch eine spezielle Lautäußerung zu bezeichnen, dazu sieben Farben und fünf Formen. [15] Ihren Angaben zufolge konnte Alex auch einfache Additionen vornehmen und nicht vorhandene Gegenstände als nicht vorhanden bezeichnen, was sie als „zero-like concept“ bezeichnet (auf deutsch etwa: eine Benennung, die dem Begriff Null ähnelt). Die Forscherin räumt allerdings selbst ein, dass nicht vorhanden und Null keinesfalls mit einander gleichzusetzen sind. [16]

Waschbären

Stanislas Dehaene berichtet in seinem Buch Der Zahlensinn von einem Experiment, in dem Waschbären lernten, Rosinen aus einem durchsichtigen Kasten zu entnehmen – und zwar immer aus jenem Kasten, der drei Rosinen enthielt und nicht aus einem der benachbarten Kästen, in denen zwei oder vier Rosinen lagen.

Rhesusaffen

Der Psychologe Marc Hauser von der Harvard University erforschte auf der zu Puerto Rico gehörenden Insel Cayo Santiago frei lebende Rhesusaffen. Für die Testtiere gut sichtbar, wurde jeweils eine bestimmte Anzahl Auberginen hinter einen Sichtschutz gelegt. Dann wurde der Sichtschutz entfernt, so dass die Tiere freien Blick auf die hingelegten Früchte hatten. Der Test bestand darin, dass nach Wegnahme der Abschirmung gelegentlich mehr Früchte zu sehen waren, als die Versuchsleiter hingelegt hatten und gelegentlich weniger.

Ähnliche Experimente mit kleinen Menschenkindern hatten ergeben, dass die Kinder deutlich länger auf die sichtbar gewordenen Gegenstände schauen, wenn deren Anzahl nicht der zuvor hingelegten Anzahl entsprach, wenn also die Erwartungen enttäuscht wurden. Ganz ähnlich reagierten die Rhesusaffen: Sie blickten relativ lange zu den Auberginen, wenn 1+1 = 2 nicht zutraf, desgleichen wenn 2 + 1 = 3, 2 - 1 = 1 und 3 - 1 = 2 nicht zutraf; wenn jedoch 2 + 2 = 4 nicht zutraf, konnten die Forscher keinen längeren Blickkontakt zu den Früchten feststellen.

Die Arbeitsgruppe Primaten-Neurokognition von Dr. Andreas Nieder (Hertie-Institut für klinische Hirnforschung an der Universität Tübingen) untersuchte ebenfalls nicht-sprachliche Vorformen von numerischer Kompetenz bei Rhesusaffen.[17] So trainierte sein Team in einem Test zwei Rhesusaffen darauf, bestimmte Mengen von Punkten zu unterscheiden, die ihnen auf einem Computerbildschirm gezeigt wurden. Zum Beispiel zeigte man den Tieren einen Kreis mit vier Punkten und nach einer Pause einen anderen Kreis, in dem sich entweder ebenfalls vier oder aber drei oder fünf Punkte befanden. Wenn die als zweites gezeigte Menge mit der ersten identisch war, ließ der Affe einen Hebel los und bekam eine Belohnung. War die Punktzahl unterschiedlich, hielt das Testtier den Hebel weiterhin und so lange gedrückt, bis ihm die identische Punktzahl präsentiert wurde.

Zugleich registrierten die Forscher mit Hilfe implantierter Mikroelektroden die Aktivität einzelner Nervenzellen in bestimmten Gehirnbereichen der Testtiere, in denen numerische Informationen verarbeitet werden: im intraparietalen Sulcus – einem Bereich im Scheitellappen der Großhirnrinde – sowie um den Präfrontalen Cortex, einem Bereich des Stirnlappens. Nieders Team fand heraus, dass numerische Informationen zunächst im intraparietalen Sulcus verarbeitet werden und von diesem „vermutlich zum Präfrontalkortex weitergeleitet“ werden, wo sie verstärkt und im Kurzzeitgedächtnis behalten werden und so für die Kontrolle des Verhaltens bereitstehen. Ferner konnte auf diese Weise nachgewiesen werden, dass einzelne Nervenzellen auf die Verarbeitung bestimmter Mengen ‚geeicht‘ sind: Sie feuern dann besonders intensiv, wenn dem Tier ‚ihre‘ Menge präsentiert wird. Bestimmte Neurone haben demnach eine bestimmte ‚Lieblingsmenge‘.[18]

Im Dezember 2007 berichteten zwei Forscherinnen der Duke University, dass Rhesusaffen-Weibchen und Studenten einfache Additionsaufgaben vergleichbar zuverlässig lösen können. [19] Den Probanden wurden auf einem Touchscreen Gruppen von Punkten gezeigt, beispielsweise eine halbe Sekunde lang fünf Punkte, nach einer kurzen Pause drei Punkte und nach einer weiteren kurzen Pause zwei Kästchen mit acht bzw. vier Punkten. Wenn das korrekte Kästchen angetippt wurde, gab es für die beiden Testtiere Fruchtsaft als Belohnung, die zwölf Studenten wurden pauschal honoriert. Insgesamt mussten von jedem Teilnehmer 40 derartige Additionsaufgaben gelöst werden. Die Menschen lösten 95 Prozent der Aufgaben, die Affen 75 Prozent. Fehler entstanden am ehesten, wenn die beiden angebotenen Lösungen sehr nah zu einander waren, also zum Beispiel aus 11 bzw. 12 Punkten bestanden.

Schimpansen

David Premack veröffentlichte 1981 zusammen mit Guy Woodruff in der Zeitschrift Nature eine Studie, die nahelegt, dass Schimpansen mit Bruchteilen von Mengen operieren können. Den Testtieren wurde beispielsweise ein halbvolles Glas gezeigt, und sie mussten dann auf ein anderes halbvolles Glas deuten und nicht auf ein zu Dreivierteln gefülltes. Nachdem die Tiere dies gelernt hatten, wurde ihnen ein halbvolles Glas gezeigt, danach aber ein halber Apfel und ein Dreiviertel-Apfel. Obwohl Äpfel und Gläser völlig anders aussehende Gegenstände sind, wiesen die Testtiere auf den halben Apfel; vermenschlichend ausgedrückt könnte man sagen: Die Schimpansen wussten, dass sich ein halber Kuchen zu einem ganzen Kuchen verhält wie das zur Hälfte gefüllte Glas zu einem ganzen Glas. Mit ähnlichem Erfolg konnten sie 1/4 und 3/4 unterscheiden. Wurde den Tieren in einem weiteren Experiment ein halbvolles Glas und zugleich ein Viertel-Apfel gezeigt, wurde anschließend sogar häufiger auf einen Dreiviertel-Kreis gedeutet als auf einen ganzen Kreis.[20]

Im Jahre 1988 wurde die Schimpansin Sheba von Sally Boysen im Ohio State University Chimpanzee Center im Umgang mit Mengen und Zahlen trainiert. Sie war das erste Tier, bei dem man das Verständnis der Bedeutung von Null nachweisen konnte. Sie beherrscht die Zahlen bis 8 und hat in diesem Zahlenraum spontan Additionen ausgeführt. Nach Sheba wurden an der Ohio State University auch andere Schimpansen in vergleichbarer Weise mit dem Zählen und dem Benennen von Mengen vertraut gemacht. Dies geschah dadurch, dass den Tieren zum Beispiel beigebracht wurde, zunächst eine gewisse Anzahl Orangen einzusammeln und danach auf jene Zahl zu deuten, die der Menge an Orangen entsprach - also zum Beispiel nach dem Aufsammeln von vier Orangen auf die Ziffer 4 zu deuten. Sheba ist zudem das einzige bisher bekannte Tier, das Zahlen auch rein symbolisch addieren konnte: Wurde ihr die Ziffer 2 auf einem Bild gezeigt und die Ziffer 4 auf einem anderen, war sie vom ersten Versuch an in der Lage, anschließend auf die Ziffer 6 zu deuten.[21] Anfang 2006 wurde das 1983 von Sally Boysen gegründete Ohio State University Chimpanzee Center aus Geldmangel aufgelöst und die Tiere in einem Primatenzentrum in Texas untergebracht.[22]

Am Primate Research Institute der Universität von Kyoto wurden gleichfalls Tests mit mehreren Schimpansen durchgeführt, die vergleichbare Ergebnissen erbrachten: Die Schimpansin Ayumu und fünf weitere Tiere können die auf einem Bildschirm beliebig angeordneten Zahlen von 1 bis 9 aufsteigend und in korrekter Reihenfolge mit dem Finger anzeigen, und eines der Tiere mit Namen Ai kann dies sogar von 0 bis 9.[23]

Dieser Erfolg wurde allerdings erst nach jahrelangem Training erzielt. Ai hatte zunächst die Bedeutung der arabischen Ziffer 1 gelernt. Als dann auch die Ziffer 2 eingeführt wurde, stellte sich heraus, dass 2 zunächst von ihr im Sinne von mehr als 1 verwendet wurde. Nachdem sie die arabische Ziffer 2 sicher anwenden konnte, wurde die Ziffer 3 ins Trainingsprogramm aufgenommen: Auch die Zahl 3 wurde von dem Tier zunächst im Sinne von mehr als 2 benutzt. Jede einzelne Zahl bis hin zur 9 musste auf diese Weise in langen Trainingsphasen erlernt werden.

Dieses Lernverhalten ist vergleichbar mit dem ca. 30 Monate alter Menschenkinder. Fünfjährige Kinder hingegen verfügen bereits über ein hinreichend großes Abstraktionsvermögen, das es ihnen ermöglicht, selbst sehr große Zahlen kreativ zu benutzen, die außerhalb ihrer normalen Erfahrungswelt liegen.

Biologische Grundlagen beim Menschen

Über das Zahlenverständnis oder gar die mathematischen Fähigkeiten der Vormenschen und der frühen, nicht-schriftlichen Kulturen ist nichts bekannt. Die ersten Nachweise beim Menschen sind Aufzeichnungen der Sumerer und alten Ägypter. Sie entwickelten u.a. Systeme zum Umgang mit großen Zahlen, zum Beispiel für die Vorratswirtschaft. Sicher ist allerdings, dass die Fähigkeit zum Umgang mit Mengen und Zahlen auch beim Menschen auf bestimmten angeborenen Eigenschaften des Gehirns beruht. Sind die hierfür tätigen Bereiche des Gehirns zum Beispiel durch eine Verletzung gestört, kann dies zum Krankheitsbild der Dyskalkulie führen. US-Forscher wiesen einen Zusammenhang zwischen dem Abschätzen von Mengen und dem Lösen von Mathematik-Aufgaben bei 5- bis 14jährigen Kindern nach.[24]

Für ein angeborenes Erkennen von Mengen auch beim Menschen spricht eine Studie französischer Forscher, die 2008 publiziert wurde. [25] Bei 36 drei Monate alten Babys hatten sie die Hirnströme registriert, während den Babys Bilder auf einem Bildschirm dargeboten worden waren. Auf den Bildern waren abwechselnd unterschiedliche Gegenstände abgebildet, auf jedem einzelnen Bild aber jeweils die gleichen Gegenstände und in der Regel eine bestimmte Anzahl davon, also zum Beispiel vier Enten; gelegentlich wurde jedoch eine abweichende Anzahl projiziert. Nachweisbar war auf diese Weise, dass eine Abweichung von der üblichen Anzahl projizierter Gegenstände zu einer Veränderung der Aktivitäten in einer bestimmten Hirnregion führte, und zwar in einer anderen Region, als dies bei einer Veränderung der abgebildeten Gegenstände unter Beibehaltung von deren Anzahl der Fall war.

Dass die Wahrnehmung von unterschiedlich großen Mengen und die Fähigkeit zum Rechnen im Gehirn eng mit einander verbunden sind, legt eine Studie an Kleinkindern nahe, die im Jahr 2006 veröffentlicht wurde.[26] Sechs- bis neunmonatigen Kleinkindern hatten die Forscher der Ben-Gurion-Universität des Negev auf einem Bildschirm zunächst jeweils mehrfach die gleiche Anzahl von Puppen gezeigt (entweder eine Puppe oder zwei). Danach wurde ihnen jeweils eine Puppe zu viel bzw. zu wenig gezeigt. Diese Abweichung führte dazu, dass die Kleinkinder den Bildschirm ca. eine Sekunde länger fixierten als zuvor. Für die Forscher war das ein Hinweis darauf, dass die Kinder die unterschiedlichen Anzahlen wahrgenommen hatten. Solche Experimente hatte Michael Posner schon 15 Jahre zuvor mit gleichem Ergebnis durchgeführt, allerdings waren seine Deutungen immer wieder infrage gestellt worden. Daher hatte sein Team diesmal zusätzlich zur Beobachtung der Augen den Kindern ein spezielles Messsystem mit 128 Elektroden zur Aufzeichnung der Hirnströme angelegt. Wie die Forscher berichteten,[27] wiesen die Hirnstrommessungen erstaunliche Parallelen zu Messungen des erwachsenen Gehirns beim Rechnen auf.

Stanislas Dehaene berichtete 2008 von Untersuchungen bei den Munduruku, einem indigenen Volk im brasilianischen Amazonas-Gebiet.[28] Die Munduruku besuchen keine Schulen und kennen nur Worte für die Zahlen eins bis fünf; größere Objektmengen werden pauschal als „einige“ oder „viele“ bezeichnet. Dehaene bat seine Testpersonen, unterschiedlichen Punkt-Mengen – jeweils zwischen 1 und 10 Punkten, in einem zweiten Test zwischen 10 und 100 Punkten – eine Position auf einer Geraden zuzuweisen. Während europäische Testpersonen 5 bzw. 50 Punkte recht genau in der Mitte der Geraden anordnen, wurden die 5 bzw. 50 Punkte von den indigenen Testpersonen stets näher bei 10 bzw. 100 angeordnet. Da eine vergleichbare „Stauchung“ größerer Mengen auch bei europäischen Kindern nachgewiesen wurde, schloss Dehaene aus seinen Befunden, dass die ursprüngliche intuitive Zuordnung der Mengen logarithmisch ist. Das Konzept der linearen Anordnung bezeichnete er als kulturelle Errungenschaft, die sich in Abwesenheit von formeller Ausbildung nicht entwickelt. [29]

Siehe auch

Literatur

  • Stanislas Dehaene: Der Zahlensinn oder Warum wir rechnen können. Birkhäuser Verlag, Basel, 1999, ISBN 3-7643-5960-9
  • Marc D. Hauser: What Do Animals Think About Numbers? American Scientist, Band 88, 2000.
  • Ute Seibt: Zahlbegriff und Zahlverhalten bei Tieren. In: Zeitschrift für Tierpsychologie Band 60, 1982, S. 325 - 341

Einzelnachweise

  1. Dr. Wilhelm Neumann: Ueber den denkenden Hund Rolf von Mannheim. Münchner Medizinische Wochenschrift, Band 31, 1916, S. 1226 f. (eine detaillierte, kritische Analyse der angeblichen Denkleistungen von Rolf)
  2. Zeitschrift für Tierpsychologie, Band 35, S. 449 ff.
  3. vom „sprechenden Hund Don“ ist im Phonogramm-Archiv des Ethnologischen Museums der Staatlichen Museen zu Berlin sogar eine Tonaufnahme aus dem Jahr 1912 überliefert
  4. Koehler, Otto: „Zähl“-Versuche an einem Kolkraben und Vergleichsversuche an Menschen. Zeitschrift für Tierpsychologie, Band 5, 1943, S. 575-712; vergl. auch Dehaene, Zahlensinn, S. 28
  5. Zeitschrift für Tierpsychologie, Band 35, S. 229 ff.
  6. F. Mechner: Effects of deprivation upon counting and timing in rats. Journal of the Experimental Analysis of Behavior, Band 5 (1962), 463-466
  7. Dehaene, Zahlensinn, S. 29
  8. Russell M. Church und W. H. Meck: The numerical attribute of stimuli. In: H. L. Roitblat, T. G. Bever und H. S. Terrace (Hg.): Animal cognition. Erlbaum, Hillsdale, NJ, 1984, S. 445 – 464
  9. Marie Dacke, Mandyam V. Srinivasan: Evidence for counting in insects. Animal Cognition, Band 11, Nummer 4, Oktober 2008, S. 1435–9448, doi:10.1007/s10071-008-0159-y
  10. Hans J. Gross, Mario Pahl, Aung Si, Hong Zhu, Jürgen Tautz und Shaowu Zhang (2009): Number-Based Visual Generalisation in the Honeybee. PLoS ONE 4(1): e4263. doi:10.1371/journal.pone.0004263
  11. C. Uller u.a.: Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal Cognition Band 6, 2003, S. 105-112
  12. Die Originalarbeit: Rudiments of number in an amphibian (pdf)
  13. William A. Roberts: How do pigeons represent numbers? Studies of number scale bisection. In: Behavioural Processes Band 69 (1) vom 29. April 2005, S. 33 – 43
    William A. Roberts: Evidence that pigeons represent both time and number on a logarithmic scale. In: Behavioural Processes Band 72 (3) vom 1. Juni 2006, S. 207 - 214
  14. Simon Hunt, Jason Low, K.C. Burns: Adaptive numerical competency in a food-hoarding songbird. Proceedings of the Royal Society B, Band 275, Heft 1649, 2008, S. 2373–2379; doi:10.1098/rspb.2008.0702
  15. Süddeutsche Zeitung Nr. 210 vom 12. September 2007, S. 18
  16. Die Homepage von Alex
    Eine Übersicht über die Trainingsmethoden für Alex (in Englisch)
  17. A. Nieder, D.J. Freedman und E.K. Miller: Representation of the quantity of visual items in the primate prefrontal cortex. Science Band 297 (2002), S. 1708–1711
  18. Pressemitteilung der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften vom 10. Juli 2006 aus Anlass eines Vortrags von Andreas Nieder auf dem Forum 2006 der Federation of European Neuroscience Societies (FENS) in Wien
  19. Jessica F. Cantlon, Elizabeth M. Brannon: Basic Math in Monkeys and College Students. PLoS Biol 5(12): e328, 18. Dezember 2007, doi:10.1371/journal.pbio.0050328
  20. G. Woodruff, D. Premack: Primative mathematical concepts in the chimpanzee. Nature Band 293 (1981), S. 568 ff.
  21. Dehaene, Zahlensinn, S. 50
  22. OHIO STATE TO CLOSE ITS PRIMATE CENTER, RETIRE ITS CHIMPANZEES
  23. Die Webseite der Schimpansin Ai in Kyoto
  24. Justin Halberda, Michèle M. M. Mazzocco, Lisa Feigenson: Individual differences in non-verbal number acuity. Nature, online publiziert am 7. September 2008 , doi:10.1038/nature07246
  25. Véronique Izard, Ghislaine Dehaene-Lambertz und Stanislas Dehaene: Distinct Cerebral Pathways for Object Identity and Number in Human Infants. PLoS Biology Band 6, Nr. 2, e11, doi:10.1371/journal.pbio.0060011
  26. Andrea Berger, Gabriel Tzur und Michael I. Posner: Infant brains detect arithmetic errors. Proceedings of the National Academy of Sciences, Band 103, S. 12649
  27. siehe auch: www.pnas.org:Infant brains detect arithmetic errors
  28. Stanislas Dehaene et. al.: Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures. Science 320, Nr. 5880, 2008, S. 1217–1220; doi:10.1126/science.1156540
  29. wörtlich: „This indicates that the mapping of numbers onto space is a universal intuition and that this initial intuition of number is logarithmic. The concept of a linear number line appears to be a cultural invention that fails to develop in the absence of formal education.“

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Mengenunterscheidung bei Tieren — Die Unterscheidung von Mengen bei Tieren (engl.: numerosity) sowie die Generalisierung von Mengen (engl.: number estimation) wurde in zahlreichen, voneinander unabhängigen verhaltensbiologischen Experimenten nachgewiesen. Insbesondere einige in… …   Deutsch Wikipedia

  • Tierverhalten — Verhalten ist ein Zentralbegriff der Verhaltensbiologie. Er bezieht sich auf alle äußerlich wahrnehmbaren und daher auch mit technischen Hilfsmitteln erfassbaren, aktiven Veränderungen, Bewegungen, Stellungen, Körperhaltungen, Gesten und… …   Deutsch Wikipedia

  • Hundepsychologe — Der Begriff Tierpsychologie hat in den vergangenen 100 Jahren einen äußerst wechselhaften Wertewandel durchlebt. Im deutschen Sprachraum erlangte er Ende des 19. Jahrhunderts in bewusst gesetzter Analogie zur „Menschen Psychologie“ zeitweilige… …   Deutsch Wikipedia

  • Tierpsychologe — Der Begriff Tierpsychologie hat in den vergangenen 100 Jahren einen äußerst wechselhaften Wertewandel durchlebt. Im deutschen Sprachraum erlangte er Ende des 19. Jahrhunderts in bewusst gesetzter Analogie zur „Menschen Psychologie“ zeitweilige… …   Deutsch Wikipedia

  • Rouge-Test — Als Spiegeltest bezeichnet man ein Experiment mit höheren Lebewesen, bei dem ein Spiegel ins Sichtfeld gehalten wird, und die Reaktion beobachtet wird. Inhaltsverzeichnis 1 Spiegeltest 2 Videotest 3 Artverhalten 4 Siehe auch 5 Quellen …   Deutsch Wikipedia

  • Rougetest — Als Spiegeltest bezeichnet man ein Experiment mit höheren Lebewesen, bei dem ein Spiegel ins Sichtfeld gehalten wird, und die Reaktion beobachtet wird. Inhaltsverzeichnis 1 Spiegeltest 2 Videotest 3 Artverhalten 4 Siehe auch 5 Quellen …   Deutsch Wikipedia

  • Werkzeuggebrauch — beim Gorilla Als Werkzeuggebrauch bei Tieren gilt die Anwendung externer Objekte zur Erweiterung der Funktionen des eigenen Körpers, um ein unmittelbares Ziel zu erreichen.[1] Diese von Jane Goodall stammende Definition schließt zum Beispiel die… …   Deutsch Wikipedia

  • Futterdressur — Dieser Artikel behandelt das Abrichten von Tieren. Für die Disziplin des Pferdesports siehe Dressurreiten. In der Schneiderei bezeichnete der fachsprachliche Begriff Dressur das körpergerechte in die Form bügeln von Schnittteilen halbfertiger… …   Deutsch Wikipedia

  • Tiertrainer — Dieser Artikel behandelt das Abrichten von Tieren. Für die Disziplin des Pferdesports siehe Dressurreiten. In der Schneiderei bezeichnete der fachsprachliche Begriff Dressur das körpergerechte in die Form bügeln von Schnittteilen halbfertiger… …   Deutsch Wikipedia

  • Verhaltensforscher — Die Verhaltensbiologie ist eine Teildisziplin der Biologie und erforscht das Verhalten der Tiere und des Menschen. Sie beschreibt das Verhalten, stellt Vergleiche zwischen Individuen und Arten an und versucht, das Entstehen bestimmter… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”