Neurobiologie

Neurobiologie

Die Neurowissenschaften sind ein Sammelbegriff für biologische, physikalische, medizinische und psychologische Wissenschaftsbereiche, die den Aufbau und die Funktionsweise von Nervensystemen untersuchen.

Untersuchungsgegenstand sind die Mechanismen, mit denen Nervensysteme dazu beitragen, dass Organismen ihre Lebensvorgänge angepasst an ihre jeweiligen Umwelten vollziehen können. Dabei werden Aufbau und Funktion sowohl von einzelnen Nervenzellen (Neuronen), von größeren Zellverbänden, die Funktionseinheiten bilden, aber auch ganzer Nervensysteme untersucht. Im Laufe der Evolution haben sich immer komplexere Nervensysteme entwickelt vom diffusen Nervensystem der Hohltiere über das Strickleiternervensystem der Arthropoden bis hin zum Zentralnervensystem der Wirbeltiere.

Forschungsrichtungen der Neurowissenschaften, die sich hauptsächlich mit der Untersuchung von Aufbau und Leistungen des Gehirns von Menschen und nicht-menschlichen Primaten befassen, werden oftmals als Hirnforschung oder Gehirnforschung bezeichnet.

Neben der experimentellen Grundlagenforschung wird auch medizinischen Fragestellungen nachgegangen, indem nach Ursachen und Heilungsmöglichkeiten von Nervenkrankheiten geforscht wird, wie z. B. Parkinson, Alzheimer oder Demenz. Darüber hinaus liefern die Neurowissenschaften auch Anstöße für die wissenschaftliche Untersuchung von Begriffen wie Bewusstsein, Gedächtnis, Seele, Geist, Emotionen etc.

In den letzten Jahrzehnten haben sich zahlreiche weitere Interaktionen zwischen den Neurowissenschaften und anderen Fachbereichen entwickelt. Beziehungen bestehen unter anderem zwischen Neurowissenschaften und der Kognitionswissenschaft, der Psychologie und der Philosophie des Geistes, die insbesondere im Bereich der Selbstbestimmungstheorie der Motivation auf Erkenntnisse der Neurowissenschaften zurückgreift.

Inhaltsverzeichnis

Disziplinen der Neurowissenschaften

Die Neurowissenschaften entziehen sich dem Versuch, sie nach verschiedenen Kriterien scharf in Teilbereiche zu untergliedern. Zwar könnte man die Disziplinen zunächst einmal nach den jeweils betrachteten mikro- und makroskopischen Hierarchie-Ebenen (Moleküle, Zellen, Zellverband, Netzwerk, Verhalten) ordnen, jedoch tendieren die Neurowissenschaften zu einer eher funktionellen Sichtweise. Das heißt, meistens wird die funktionelle Rolle eines mikroskopischen Elements für ein (makroskopisches) System ein oder mehrere Ebenen darüber untersucht.

Grob lassen sich die Neurowissenschaften, den Ebenen entsprechend, in vier unterschiedliche Disziplinen einteilen:

Die Neurobiologie beschäftigt sich im Wesentlichen mit den molekularen und zellbiologischen Grundlagen der Neurowissenschaften. Disziplinen, die auf dieser Ebene arbeiten, sind die neurowissenschaftlichen Zweige von Biochemie, Molekularbiologie, Genetik und Epigenetik, aber auch der Zellbiologie, der Histologie und Anatomie sowie der Entwicklungsneurobiologie.

An zentraler Stelle der Neurowissenschaften steht die Neurophysiologie. Obwohl die Physiologie normalerweise eine Unterdisziplin der Biologie ist, nimmt sie in den Neurowissenschaften insofern eine besondere Rolle ein, als neuronale Aktivität und somit die „Sprache der Nerven“ in den Bereich der Neurophysiologie fällt. Die Neurophysiologie lässt sich untergliedern in die Elektrophysiologie und die Sinnesphysiologie, ist aber auch eng verwandt mit der Neuropharmakologie, Neuroendokrinologie und Toxikologie.

Einen zentralen Platz auf einer höheren Ebene nimmt die Kognitive Neurowissenschaft ein. Sie befasst sich mit den neuronalen Mechanismen, die kognitiven und psychischen Funktionen zugrundeliegen. Sie interessiert sich also vor allem für höhere Leistungen des Gehirns.

Die klinisch-medizinischen Fächer beschäftigen sich mit Pathogenese, Diagnose und Therapie der Erkrankungen des Gehirns und umfassen die Neurologie, Neuropathologie, Neuroradiologie, und Neurochirurgie sowie die Biologische Psychiatrie und Klinische Neuropsychologie.

Methoden der Neurowissenschaften

Die Methoden der Neurowissenschaften unterscheiden sich zunächst in ihrer Anwendbarkeit beim Menschen. Nichtinvasive Verfahren können zum Studium des menschlichen Nervensystems eingesetzt werden. Folgende Liste gibt die verfügbaren nichtinvasiven Verfahren der Neurowissenschaften an, also Verfahren, die das System nicht schädigen. Ausnahme sind hier die Läsionsstudien, die versuchen, durch systematischen Vergleich von geschädigten Gehirnen Aufschluss auf die Lokalisation von Funktionen zu bekommen. Allerdings wird die Schädigung nicht gezielt vorgenommen, sondern Patienten mit Hirnverletzungen oder Schlaganfällen stellen die Basis für die Studie dar.

Die Psychophysik ist ausschließlich mit der Messung der Fähigkeiten des Gehirns als Gesamtkomplex innerhalb des Lebewesens beschäftigt. Sie liefert Hinweise auf den Bereich der Möglichkeiten, den ein Lebewesen hat. Die Psychophysik wird oft zusammengebracht mit der Anatomie, wenn Läsionsstudien durchgeführt werden. Patienten mit Hirnläsionen z. B. nach einem Schlaganfall werden mit gesunden Menschen verglichen. Der Vergleich der (psychophysischen) Möglichkeiten zweier neuronaler Systeme mit intaktem bzw. geschädigtem Gehirn erlaubt, die Rolle des geschädigten Hirnbereiches für die Fähigkeiten und Vermögen einzuschätzen. Die Läsionsstudien haben allerdings den Nachteil, dass der Ort der Schädigung erst nach dem Tode des Patienten festgestellt werden konnte. Sie waren daher sehr langwierig, stellten aber über lange Zeit die Basis aller neurowissenschaftlichen Studien dar und begrenzten die Geschwindigkeit des neurowissenschaftlichen Erkenntnisgewinns. In ihrer Methodik spielt die Aktivität von Nervenzellen insofern keine unmittelbare Rolle, als nicht die Nervenzelle, sondern das Gesamtsystem des Lebewesens der Schwerpunkt der Studie ist.

Mit der Entwicklung von Geräten, die direkt oder indirekt Rückschlüsse auf die Aktivität des Gehirns zulassen, änderte sich auch die Art der Studien. Die Entwicklung der Elektroenzephalographie (EEG) erlaubt es, dem Gehirn beim Arbeiten indirekt zuzuschauen. Die Aktivität von Nervenzellen erzeugt ein elektrisches Feld, das außerhalb des Schädels gemessen werden kann. Da sich orthogonal zu jedem elektrischen Feld auch ein Magnetfeld ausbreitet, kann auch dieses gemessen werden, diese Methode bezeichnet man als Magnetoenzephalographie (MEG). Beiden Methoden ist gemeinsam, dass sie es ermöglichen, die Aktivität von großen Zellverbänden in hoher zeitlicher Auflösung zu messen und damit Aufschluss über die Reihenfolge von Verarbeitungsschritten zu erhalten. Die räumliche Auflösung ist mäßig, dennoch wird es den Forschern erlaubt, Erkenntnisse über Ort und Zeitpunkt von neuronalen Prozessschritten am lebenden Menschen zu gewinnen.

Mittels der Computertomographie (CT) ist es möglich geworden, Ort und Ausdehnung einer Läsion auch beim lebenden Patienten zu bestimmen. Läsionsstudien wurden damit schneller und auch genauer, da das Gehirn bereits unmittelbar nach einer Schädigung gescannt werden kann und die Anatomie der Schädigung bereits Hinweise auf mögliche (kognitive) Ausfälle geben kann, die dann gezielt studiert werden können. Ein weiterer Nebeneffekt ist die Tatsache, dass das Gehirn sich von einer Schädigung bis zum Tode des Patienten verformt, was die genaue anatomische Bestimmung der Schädigung erschwert. Diese Verformung spielt beim CT insofern keine Rolle, als die Zeitspanne zwischen Schädigung und Tomographie für gewöhnlich kurz ist. Dies gilt im gleichen Maße für die Magnetresonanztomographie (MRT/MRI, auch Kernspintomographie genannt). Beide Methoden haben eine gute bis sehr gute räumliche Auflösung, erlauben aber keinerlei Rückschlüsse auf die Aktivität von Nervenzellen. Sie stellen die Fortsetzung der Läsionsstudien dar.

Funktionelle Studien, also Studien, die die Funktion bestimmter Hirnareale untersuchen, wurden erst möglich, als Bildgebende Verfahren entwickelt wurden, deren gemessene Signalstärke sich in Abhängigkeit von der Aktivität von Hirnarealen verändert. Zu diesen Methoden zählt die Positronen-Emissions-Tomographie (PET), die Single Photon Emission Computed Tomography (SPECT) sowie die Funktionelle Magnetresonanztomographie (fMRI/fMRT). Sie alle erzeugen ein Signal von mäßiger bis guter räumlicher Auflösung, haben aber den Nachteil, praktisch blind für die zeitliche Abfolge von neuronalen Prozessen (im Millisekundenbereich) zu sein. Eine relativ neue Methode ist die nichtinvasive Nahinfrarotspektroskopie, die zwar eine gute zeitliche Auflösung besitzt, allerdings nur kleine Bereiche des Gehirns abbilden kann. Im Gegensatz zu anderen funktionellen Methoden kann sie aber wie ein EEG mobil und in natürlichen Umgebungen eingesetzt werden.

In tierischen Modellsystemen oder in klinischen Studien kommen auch invasive Verfahren zum Einsatz, die gezielt die Eigenschaften des Nervensystems verändern, oder aber durch die Messung Schäden oder Verletzungen anrichten. Auf globaler Ebene verändern vor allem pharmakologische Agenten die Eigenschaften von Neuronen oder anderen für die neuronale Aktivität, Plastizität oder Entwicklung relevanten Mechanismen. Bei der pharmakologischen Intervention kann dadurch je nach Substanz ein Hirnareal beeinflusst oder ganz zerstört, oder aber im gesamten Gehirn lediglich ein ganz bestimmter Kanal- oder Rezeptortyp der neuronalen Zellmembran beeinflusst werden. Die pharmakologische Intervention ist damit also gleichermaßen eine globale wie eine spezifische funktionelle Methode. Um die Effekte der Intervention zu messen, greift man für gewöhnlich auf die Psychophysik, die Elektrophysiologie oder (post mortem) die Histologie zurück.

Die Transkranielle Magnetstimulation (TMS) erlaubt es, kurzfristig Hirnareale auszuschalten. Sie wird, obwohl invasiv, auch beim Menschen angewendet, da man nicht von bleibenden Schäden ausgeht. Mittels eines starken Magnetfeldes wird Strom schmerzfrei in ganze Hirnareale induziert, deren Aktivität dadurch nichts mehr mit der normalen Aufgabe der Areale zu tun hat. Man spricht daher manchmal auch von einer temporären Läsion. Die Dauer der Läsion ist für gewöhnlich im Millisekundenbereich und erlaubt daher Einblick in die Abfolge neuronaler Prozesse. Bei der repetitiven transkraniellen Magnetstimulation (rTMS) dagegen werden Hirnareale durch wiederholte Stimulation für Minuten ausgeschaltet, indem man sich einen Schutzmechanismus des Gehirns zunutze macht. Die wiederholte gleichzeitige Stimulation ganzer Hirnareale gaukelt dem Hirn einen drohenden epileptischen Anfall vor. Als Gegenreaktion wird die Aktivität des stimulierten Hirnareals unterdrückt, um eine Ausbreitung der Erregung zu verhindern. Die so erzeugte temporäre Läsion bleibt nun für einige Minuten bestehen. Die räumliche Auflösung ist mäßig, die zeitliche Auflösung sehr gut für TMS und schlecht für rTMS.

Mittels Elektrostimulation kortikaler Areale kann man, ebenso wie bei der TMS, kurzfristig die Verarbeitung von Nervenimpulsen in bestimmten Hirnarealen beeinflussen oder ganz ausschalten. Im Gegensatz zur TMS wird dazu allerdings der Schädel geöffnet (da von außerhalb des Schädels wesentlich stärkere, schmerzhafte Ströme appliziert werden müssen) und eine Elektrode in ein Hirnareal von Interesse implantiert. Das erlaubt eine wesentlich exaktere räumliche Bestimmung der betroffenen Areale. Die Elektrostimulation wird vor allem in der Neurochirurgie zur Bestimmung der Sprachzentren angewandt, die bei Operationen nicht beschädigt werden dürfen, aber auch in Tiermodellen, um kurzfristig die neuronale Aktivität beeinflussen zu können.

Dem entgegengesetzt arbeitet die Elektrophysiologie, die, statt Ströme ins Gehirn zu induzieren, die Hirnströme von einzelnen Zellen oder Zellverbänden misst. Hier wird zwischen In-vivo- und In-vitro-Experimenten unterschieden. Bei In-vivo-Experimenten werden Elektroden in das Gehirn eines lebendigen Tieres gebracht, und zwar, indem man sie entweder permanent implantiert (chronisches Implantat) oder nur temporär in Hirnareale von Interesse steckt (akutes Experiment). Chronische Implantate erlauben es, die Aktivität des Gehirns bei einem Tier zu studieren, das sich normal verhält. In-vitro-Experimente studieren die elektrische Aktivität von Zellen und werden nicht an lebendigen Tieren vorgenommen, sondern nur am Hirngewebe. Die Aktivität des Gewebes entspricht hier nicht dem normalen Verhalten des Tieres, aber Techniken wie die Patch-Clamp-Technik erlauben sehr viel genauere Rückschlüsse auf die Eigenschaften der Neuronen in einem Hirnareal, da diese systematisch studiert werden können.

Für das Studium der morphologischen Struktur von Hirngewebe war schon immer die Mikroskopie wichtig. Neuere Techniken, vor allem Multiphotonenmikroskopie und konfokale Mikroskopie erlauben eine bislang ungeahnte räumliche Auflösung. Einzelne Neuronen können in 3D vermessen und morphologische Veränderungen genau studiert werden. Bei Benutzung ionensensitiver oder spannungssensitiver Farbstoffe können auch funktionelle Studien durchgeführt werden.

Weitere Felder der Neurowissenschaften auf zellulärer Ebene sind die Techniken der Genetik. Mit ihrer Hilfe können bei Versuchstieren ganz spezifische Gene gelöscht werden, um deren Bedeutung fürs Nervensystem zu beobachten. Praktisch alle oben angeführten Methoden sind auf solchen Mutanten anwendbar.

Geschichte der Neurowissenschaften

Siehe: Geschichte der Hirnforschung

Siehe auch

Literatur

  • David Chalmers: "Mind papers". Bibliographie mit über 18.000 Einträgen zum Gehirn. http://consc.net/mindpapers/
  • Olaf Breidbach: Die Materialisierung des Ichs. Zur Geschichte der Hirnforschung im 19. und 20. Jahrhundert. Suhrkamp, Frankfurt 1997, ISBN 978-3518288764 (Suhrkamp-Taschenbuch Wissenschaft, 1276).
  • Thomas Budde, Sven Meuth: Fragen und Antworten zu den Neurowissenschaften. Huber, Bern 2003, ISBN 3-456-83929-4.
  • Michael Hagner: Homo cerebralis. Der Wandel vom Seelenorgan zum Gehirn. Insel, Frankfurt 2000, ISBN 3458343644.
  • Michael Hagner: Der Geist bei der Arbeit. Historische Untersuchungen zur Hirnforschung. Wallstein, Göttingen 2006 ISBN 3835300644
  • Leonhard Hennen, Reinhard Grünwald, Christoph Revermann und Arnold Sauter: Einsichten und Eingriffe in das Gehirn. Die Herausforderung der Gesellschaft durch die Neurowissenschaften. Edition Sigma, Berlin 2008 ISBN 978-3836081245.
  • Eric Richard Kandel, James H. Schwartz, Thomas M. Jessel: Neurowissenschaften. Eine Einführung. Spektrum, Heidelberg 1995, ISBN 3860253913 (Übersetzung des englischen Originals mit allerdings geringerem Umfang: Principals of Neural Science. 4. Auflage. McGraw-Hill, New York 2000, ISBN 978-0838577011).
  • Eric Richard Kandel: Psychiatrie, Psychoanalyse und die neue Biologie des Geistes. Suhrkamp, Frankfurt 2006, ISBN 3518584510.
  • Carsten Könneker (Hrsg.): Wer erklärt den Menschen? Hirnforscher, Psychologen und Philosophen im Dialog. Fischer, Frankfurt 2006, ISBN 3596173310.
  • Jürgen Peiffer: Hirnforschung in Deutschland 1849 bis 1974. Springer, Berlin 2004, ISBN 3540406905.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • neurobiologie — [ nørobjɔlɔʒi ] n. f. • 1913; de neuro et biologie ♦ Sc. Étude du fonctionnement des cellules et des tissus nerveux. N. NEUROBIOLOGISTE . ● neurobiologie nom féminin Discipline qui étudie la biologie des éléments nerveux. neurobiologie n …   Encyclopédie Universelle

  • neurobiologie — neurobiologíe s. f., art. neurobiología, g. d. art. neurobiologíei Trimis de siveco, 10.08.2004. Sursa: Dicţionar ortografic  NEUROBIOLOGÍE s.f. Biologia sistemului nervos. [gen. iei. / cf. fr. neuro biologie] …   Dicționar Român

  • Neurobiologie — Neu|ro|bio|lo|gie 〈f. 19; unz.〉 interdisziplinäre Wissenschaft, die den Aufbau u. die Funktion des Nervensystems auf neuronaler u. molekularer Ebene untersucht * * * Neu|ro|bio|lo|gie [… gi:], die; : interdisziplinäre Forschungsrichtung, die sich …   Universal-Lexikon

  • Neurobiologie der Bindung — Die Neurobiologie der Bindung beschreibt komplexe neurobiologische Abläufe, die während des Bindungsverhaltens wirksam werden. Das Bindungsverhalten hat sich im Zuge der Evolution geformt und dient der Arterhaltung. Es motiviert dazu, soziale… …   Deutsch Wikipedia

  • Neurobiologie — Neurosciences Neurosciences Niveaux d analyse Moléculaire • …   Wikipédia en Français

  • Neurobiologie — Neu|ro|bi|o|lo|gie 〈f.; Gen.: ; Pl.: unz.; Biol.〉 Teilgebiet der Biologie, das sich mit Aufbau u. Funktion der Nerven u. des Nervensystems befasst [Etym.: <Neuro… + Biologie] …   Lexikalische Deutsches Wörterbuch

  • Neurobiologie — Neu|ro|bio|lo|gie [auch nɔyro...] die; : ↑interdisziplinäre Forschungsrichtung, die sich die Aufklärung von Struktur u. Funktion des Nervensystems zum Ziel gesetzt hat …   Das große Fremdwörterbuch

  • Neurobiologie — Neu|ro|bio|lo|gie, die; (Wissenschaft, die Aufbau und Funktion des Nervensystems erforscht) …   Die deutsche Rechtschreibung

  • Neurobiologie développementale — Neurodéveloppement Le neurodéveloppement (ou développement neural) désigne la mise en place du système nerveux au cours de l embryogenèse et aux stades suivant de l ontogenèse d un organisme animal. Son étude repose sur une approche combinant… …   Wikipédia en Français

  • Zentrum für Molekulare Neurobiologie — Das Zentrum für Molekulare Neurobiologie Hamburg (ZMNH) ist eine Forschungseinrichtung des Universitätsklinikums Hamburg Eppendorf (UKE) und hat sich seit der Gründung 1988 zu einem der führenden Grundlagen Forschungszentren für Neurobiologie… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”