Quantum Information Theory

Quantum Information Theory

Die Quanteninformatik oder Quanteninformationsverarbeitung ist die Wissenschaft von der Informationsverarbeitung mit Informationsträgern, die quantenmechanische Phänomene ausnutzen. Diese unterscheiden sich in wesentlichen Eigenschaften von klassischen Informationsträgern und schaffen so neue Perspektiven. So können damit einige Berechnungen wesentlich schneller durchgeführt werden, als es mittels klassischer Computer möglich ist.

Die klassische Informationsverarbeitung verwendet stets makroskopisch viele Teilchen zur Repräsentation eines Zustands. Zwar unterliegen die einzelnen Teilchen quantenmechanischen Gesetzen, jedoch kann deren quantenmechanische Eigenart bei makroskopisch vielen Teilchen aufgrund des Korrespondenzprinzips vernachlässigt werden.

Inhaltsverzeichnis

Quanteninformation

In der Quanteninformatik ersetzt die Quanteninformation die klassische Information. Analog zum Bit der klassischen Information gibt es in der Quanteninformation ebenfalls eine kleinste Einheit, das Qubit. Hierbei handelt es sich um ein quantenmechanisches Zwei-Niveau-System.

In der Quanteninformatik werden die Quanteneigenschaften eines Systems von Qubits ausgenutzt. Neben der Superposition ist dies insbesondere die Verschränkung, die sich als Interferenz verschiedener Basiszustände interpretieren lässt.

Aufgrund des Komplementaritätsprinzips und der damit verbundenen quantenmechanischen Unschärferelation kann der Zustand von Qubits nicht vollständig ausgelesen werden. Vielmehr führt jedes Lesen eines Qubits zu einem Kollaps der Wellenfunktion, so dass letztlich nur ein klassisches Bit ausgelesen wird. Aus diesem Grunde arbeiten Quantenalgorithmen generell probabilistisch, d. h. ein Durchlauf liefert nur mit einer gewissen (möglichst hohen) Wahrscheinlichkeit das gewünschte Ergebnis.

Quantenkommunikation

Ein wichtiges Anwendungsgebiet der Quanteninformatik ist die Quantenkommunikation. Diese lässt sich über einen Quantenkanal beschreiben. Die praktische Anwendung wäre das Quanteninternet. Hierfür wird die Quantenteleportation verwendet. Dies erlaubt insbesondere die sichere Verschlüsselung von gesendeten Nachrichten durch Quantenkryptografie, könnte aber auch für die Vernetzung von Quantencomputern (siehe nächster Abschnitt) genutzt werden.

Quantencomputer

→Hauptartikel Quantencomputer

Das ehrgeizigste Ziel der Quanteninformatik ist die Entwicklung eines Quantencomputers, der für praktische Aufgaben eingesetzt werden kann. Ein solcher könnte dank des Quantenparallelismus bestimmte Aufgaben, für die ein klassischer Computer sehr lange braucht, in wesentlich kürzerer Zeit berechnen. Ein Beispiel für die extreme Beschleunigung der Lösung bestimmter Probleme ist der Shor-Algorithmus zur Zerlegung des Produkts zweier Primzahlen in seine Faktoren. Dieser Algorithmus hat eine besondere Relevanz, da die Sicherheit des verbreiteten RSA-Verschlüsselungsverfahrens gerade auf der Schwierigkeit dieser Zerlegung beruht.

Ähnlich wie klassische Computer funktionieren auch Quantencomputer mit diskreten Operationen, die nur auf eine begrenzte Zahl von Qubits wirken. Solche Operationen nennt man Quantengatter.

Ein Problem bei der Entwicklung von Quantencomputern ist die Dekohärenz, die Quantenzustände in klassische Zufallsverteilungen überführt. Zu deren Kompensation braucht man spezielle Fehlerkorrekturverfahren, die ohne die Messung der Qubits auskommen, denn diese Messung würde ihrerseits den Quantenzustand zerstören.

Literatur

  • Dagmar Bruß: Quanteninformation. Fischer Taschenbuch Verlag, Frankfurt am Main 2003, ISBN 3-596-15563-0
  • Matthias Homeister: Quantum Computing verstehen. Vieweg, Wiesbaden 2005, ISBN 3-528-05921-4
  • Sakurai, Jun John: Modern Quantum Mechanics. Revised Edition 1995
  • Jürgen Brendel, : Quantenphänomene des Lichts. Harri Deutsch, Frankfurt 1994
  • Wolfgang Tittel u.a.: Quantenkryptographie in: Physikalische Blätter 55 (6) 1999, S. 25
  • J.B. Waldner: Nanocomputers and Swarm Intelligence, ISTE, p150-p159, ISBN 1-84704-002-0.
  • R.F. Werner: Quantum Information Theory - an Invitation. In: Quantum Information - An Introduction to Basic Theoretical Concepts and Experiments, Springer Tracts in Modern Physics (2001) Publ.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Quantum information science — concerns information science that depends on quantum effects in physics. It includes theoretical issues in computational models as well as more experimental topics in quantum physics including what can and cannot be done with quantum information …   Wikipedia

  • Quantum game theory — Quantum game theory, concisely put, is an extension of classical game theory to the quantum domain. It differs from classical game theory in three primary ways: #Superposed initial states, #Quantum Entanglement of initial states, #Superposition… …   Wikipedia

  • Quantum information — For the journal with this title, see Historical Social Research. In quantum mechanics, quantum information is physical information that is held in the state of a quantum system. The most popular unit of quantum information is the qubit, a two… …   Wikipedia

  • Information theory — Not to be confused with Information science. Information theory is a branch of applied mathematics and electrical engineering involving the quantification of information. Information theory was developed by Claude E. Shannon to find fundamental… …   Wikipedia

  • Entropy in thermodynamics and information theory — There are close parallels between the mathematical expressions for the thermodynamic entropy, usually denoted by S , of a physical system in the statistical thermodynamics established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s; and the …   Wikipedia

  • Entropy (information theory) — In information theory, entropy is a measure of the uncertainty associated with a random variable. The term by itself in this context usually refers to the Shannon entropy, which quantifies, in the sense of an expected value, the information… …   Wikipedia

  • Quantum entanglement — Quantum mechanics Uncertainty principle …   Wikipedia

  • Quantum no-deleting theorem — Quantum states are fragile in one sense and also robust in another sense. Quantum theory tells us that given a single quantum it is impossible to determine it. One needs infinite number of identically prepared quantum states (copies) to know a… …   Wikipedia

  • Quantum optics — is a field of research in physics, dealing with the application of quantum mechanics to phenomena involving light and its interactions with matter. History of quantum optics Light is made up of particles called photons and hence inherently is… …   Wikipedia

  • Noncommutative quantum field theory — In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”