Quasikonforme Abbildung

Quasikonforme Abbildung

In der Funktionentheorie ist eine quasikonforme Abbildung eine Verallgemeinerung einer biholomorphen Abbildung. Hier wird im Wesentlichen auf die Winkeltreue verzichtet.

Inhaltsverzeichnis

Definition

Seien G und H zwei Gebiete der komplexen Zahlenebene. Ein Homöomorphismus

f:G\longrightarrow H

heißt quasikonform, wenn es eine positive reelle Zahl k kleiner 1 gibt, so dass

\|\mu\|_{\infty} < k

gilt. Dabei ist

\mu = \frac{f_{\bar{z}}}{f_z}=\frac{\partial_{\bar{z}}f}{\partial_z f}

die komplexe Dilatation, auch Beltrami-Koeffizient genannt.

Beltrami-Gleichung

Sei k eine positive reelle Zahl kleiner 1. Die partielle Differentialgleichung


\partial_{\bar{z}}f=\mu(z)\partial_z f,

wobei μ(z) eine integrierbare Funktion mit \|\mu\|_{\infty} < k ist, heißt Beltrami-Gleichung.

Hauptsatz

Auf der riemannschen Zahlenkugel gilt, dass die Lösungen der Beltrami-Gleichung genau die quasikonformen Abbildungen sind.

Als Anwendung dieses Satzes kann man zeigen, dass alle fastkomplexen Strukturen auf der 2-Sphäre und auf allen anderen zweidimensionalen Mannigfaltigkeiten integrabel sind, d.h., alle fastkomplexen Strukturen sind komplexe Strukturen.

Literatur

  • C. B. Morrey: On the solutions of quasilinear elliptic partial differential equations. Trans. Amer. Math. Soc., Bd. 43, 1938, Seiten 126–166.
  • V. Gol'dshtein, Yu. G. Reshet'nyak: Quasiconformal mappings and Sobolev spaces. Kluwer, 1990 (übersetzt aus dem Russischen).
  • A. Bejancu: Quasi-conformal mapping. In: Hazewinkel, Michiel: Encyclopaedia of Mathematics. Springer, 2001, ISBN 978-1556080104.
  • Papadopoulos, Athanase, ed. (2007), Handbook of Teichmüller theory. Vol. I, IRMA Lectures in Mathematics and Theoretical Physics, 11, European Mathematical Society (EMS), Zürich, doi:10.4171/029, ISBN 978-3-03719-029-6, MR2284826
  • Papadopoulos, Athanase, ed. (2009), Handbook of Teichmüller theory. Vol. II, IRMA Lectures in Mathematics and Theoretical Physics, 13, European Mathematical Society (EMS), Zürich, doi:10.4171/055, ISBN 978-3-03719-055-5, MR2524085

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Integrabel — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kollinear — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kopunktal — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Mathematisches Attribut — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Multivariat — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Primitives Element — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Semilinear — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”