- Raman-Prozess
-
Als Raman-Streuung (auch Raman-Effekt oder Smekal-Raman-Effekt) wird die inelastische Streuung von Licht an Atomen oder Molekülen bezeichnet. Sie ist nach Chandrasekhara Raman benannt, der den Effekt 1928 erstmals nachweisen konnte. Das emittierte Streulicht ist bei der Raman-Streuung spezifisch und besitzt eine höhere oder niedrigere Frequenz als die des einfallenden Lichtstrahls. Der Anteil des frequenzverschobenen Lichtes ist jedoch um einen Faktor 103 bis 104 geringer als der des elastisch gestreuten Lichtes, welches als Rayleigh-Streuung bezeichnet wird.
Inhaltsverzeichnis
Geschichte
Der Effekt wurde 1923 von Adolf Smekal vorhergesagt – deswegen auch ab und zu Smekal-Raman-Effekt – und 1928 durch Raman und Krishnan (an Flüssigkeiten) sowie unabhängig davon durch Grigory Landsberg und Leonid Mandelstam (an Kristallen) nachgewiesen. Raman erhielt dafür 1930 den Nobelpreis für Physik.[1][2][3][4]
Beschreibung
Findet eine Wechselwirkung zwischen einem Molekül oder einem Kristall und einem Photon statt, kommt es mit einer sehr geringen Wahrscheinlichkeit zu einer bleibenden Energieübertragung zwischen dem anregenden Photon und der angeregten Materie. Dabei ändert sich die Rotations- und Schwingungsenergie des beteiligten Moleküls bzw. die Schwingungsenergie in einem Kristallgitter. Befindet sich das Molekül nach dem Streuvorgang auf einem höheren Energieniveau als zuvor, so ist die Energie und die Frequenz des emittierten Photons geringer als die des anregenden Photons. Dieser Vorgang wird als Stokes-Raman-Streuung bezeichnet. Befindet sich das streuende Molekül nach dem Anregungsvorgang auf einem niedrigeren Energieniveau als zuvor, so besitzt das gestreute Photon eine höhere Energie und eine höhere Frequenz als die des anregenden Photons. Dies wird als Anti-Stokes-Raman-Streuung bezeichnet.
Die Energiedifferenz zwischen eingestrahltem und gestreutem Photon wird als Raman-Frequenzverschiebung bezeichnet und ist charakteristisch für das streuende Molekül. Über das Plancksche Wirkungsquantum ist die Energie eines Photons linear mit seiner Frequenz verknüpft. Liegt das streuende Molekül in gasförmiger oder flüssiger Phase vor, so werden Molekülschwingungen und Moleküldrehungen betrachtet. Handelt es sich bei der Probensubstanz um einen kristallinen Festkörper, sind Gitterschwingungen (Phononen), Elektron-Loch-Anregungen oder Spinflip-Prozesse für den Raman-Effekt verantwortlich.
Physikalische Beschreibung
Zur Berechnung der Wechselwirkung von Materie und Licht dient der Raman-Tensor , der den Zusammenhang der Streuintensität von der Polarisation des eingestrahlten Lichts und des gestreuten Lichts beschreibt:
Da und experimentell frei wählbar sind, bestimmt allein der Raman-Tensor das Streuverhalten der Materie. Er wird sowohl durch die Symmetrie des Festkörpers (bzw. Moleküls) als auch durch die Symmetrie der Gitterschwingung (bzw. Molekülschwingung) vorgegeben. Entscheidend ist hier die Kenntnis der Punktgruppen und der möglichen Symmetrieoperationen.
Mit Hilfe des Raman-Tensors lassen sich die Raman-Auswahlregeln bestimmen.
Raman-Streuung in Plasmen
Während man in der Atom- und Molekülphysik unter dem Raman-Effekt meist die inelastische Streuung von Licht an Gitterschwingungen versteht, meint man in der Plasmaphysik damit die Streuung an Plasmawellen. In der Vorwärtsrichtung sieht man im Spektrum zwei spektrale Seitenbänder mit den Frequenzen , wobei
die Plasmafrequenz ist (n ist die Elektronendichte (Anzahl pro Volumen), me die Elektronenmasse, Dielektrizitätskonstante des Vakuums). In Rückwärtsrichtung sieht man meistens nur die Laserfrequenz ωL und die Stokesfrequenz ωS = ωL − ωp. Das Licht verstärkt die Plasmawelle während des Streuprozesses (Raman-Instabilität). Das Plasma wird dabei aufgeheizt. Die Formel gilt für die Plasmafrequenz im freien Plasma. Für ein Elektronengas im metallischen Festkörper gilt:
stellt dabei die relative Permittivität des Ionenrumpfes des Metallkristalls dar, m * die Effektive Masse.
Resonanz-Raman-Effekt
Wenn die Frequenz des anregenden Photons resonant ist mit einem elektronischen Übergang im Molekül bzw. Kristall, ist die Streueffizienz um zwei bis drei Größenordnungen erhöht.
Phonon-Raman-Streuung
Phonon-Raman-Streuung bezeichnet die inelastische Lichtstreuung an optischen Gitterschwingungen (optischen Phononen) in Kristallen. Die Streuung an akustischen Phononen nennt man Brillouin-Streuung.
Der Zustandsraum der Phononen im kristallinen Festkörper kann durch die Phonon-Bandstruktur veranschaulicht werden. Es handelt sich dabei um Energieflächen im Raum der Wellenzahlen. Ein Festkörper aus N Atomen mit r-atomiger Basis besitzt im Dreidimensionalen 3r Dispersionszweige mit je N Schwingungszuständen, also insgesamt 3Nr Schwingungsmodi. Diese 3r Dispersionszweige teilen sich in 3 akustische Zweige und 3r-3 optische Zweige auf. Für akustische Phononen verschwindet die Frequenz im Grenzfall langer Wellenlängen linear, die Steigung ist durch die Schallgeschwindigkeit gegeben. Optische Phononen haben dagegen eine feste endliche Frequenz im Grenzfall langer Wellenlängen.
Da die Wellenlänge von sichtbarem Licht deutlich größer ist (mehrere Potenzen) als der Atomabstand im Festkörper, bedeutet dies im reziproken Raum, dass die Anregung von Gitterschwingungen durch Licht nahe am Γ-Punkt stattfindet. Das hat zur Folge, dass der Impulsübertrag nur sehr klein ist. Eine Anregung von mehreren Phononen, deren Gesamtimpuls nahe Null ist, ist ebenfalls möglich (Mehrphononenprozess). Ein Beispiel ist die Anregung von zwei entgegengesetzt laufenden transversal-akustischen Phononen am X-Punkt (2TAX), deren Energien sich addieren. Ihr Gesamtimpuls ist aber null.
Ineleastische Streuung von hochenergetischer Strahlung
Streuung von hochenergetischen elektromagnetischen Wellen (mind. Röntgenstrahlung) an freien (bzw. quasifreien) Elektronen bezeichnet man als Compton-Streuung. Da keine inneren Freiheitsgrade angeregt werden, ist diese Streuung elastisch. Bei dem Streuprozess wird Energie auf das Elektron übertragen: Dessen Impuls vergrößert sich. Bei kleineren Energien des einfallenden Lichtes ist der Impulsübertrag vom streuenden Licht auf das Elektron vernachlässigbar. Die Streuung ist ebenfalls elastisch und heißt Thomson-Streuung.
Anwendung
Die Raman-Streuung bildet die Grundlage für die Raman-Spektroskopie, die zur Untersuchung von Materialeigenschaften wie Kristallinität, Orientierung, Zusammensetzung, Verspannung, Temperatur, Dotierung usw. eingesetzt wird. Des Weiteren wird die Raman-Streuung und dessen Temperaturabhängigkeit in Glasfaser für die ortsaufgelöste Faseroptische Temperaturmessung (engl. distributed temperature sensing, DTS) genutzt.
Oberflächenverstärkte Raman-Streuung
Geschichte
Dieser Effekt wurde erstmals von Fleischmann et al. 1974 bei der Untersuchung der Absorption von Pyridin auf einer rauen Silberelektrodenoberfläche beobachtet.[5] Sie erklärten die gefundenen Intensitäten der Raman-Signale damit, dass die durch die Rauhigkeit entsprechend größere Oberfläche eine erhöhte Absorption von Pyridin-Molekülen ermöglicht und somit höhere Signalintensitäten bedingt, weshalb sie ihrer Entdeckung keine angemessene Bedeutung beimaßen. Somit geht die eigentliche Entdeckung des SERS-Effekts auf Jeanmaire und van Duyne sowie Albrecht und Creighton zurück.[6] [7]
Beschreibung
Raman-Streuung von Molekülen besitzt einen sehr kleinen Streuquerschnitt (ca. 10−30 cm2[8]), so dass man eine relative hohe Konzentration an Molekülen benötigt, um ein detektierbares Signal zu erhalten; Raman-Spektren einzelner Moleküle sind so nicht möglich. Wenn sich das Molekül aber nahe einer metallischen Oberfläche (vor allem Kupfer, Silber und Gold) befindet, kann das Raman-Signal extrem verstärkt werden, oberflächenverstärkte Raman-Streuung (surface enhanced raman scattering, SERS). Hierbei werden zwei Mechanismen diskutiert:
- Bei der chemischen Verstärkung bildet das Molekül einen Komplex, welcher neue Energieniveaus gegenüber dem Molekül besitzt. Angeregte Elektronen können vom Metall zum Molekül und zurück springen und dabei das Molekül in einem angeregten Schwingungszustand zurücklassen. Man spricht auch von einem vorübergehenden Ladungsübergang. Es werden Verstärkungen bis zu 102 angegeben. Damit sich ein Komplex bilden kann, wird eine chemische Bindung zwischen Metall und Molekül benötigt, d. h., das Molekül muss an der Oberfläche chemisorbiert sein.
- Die elektromagnetische Verstärkung beruht auf Anregung von Oberflächenplasmonen im Metall, welche an Spitzen an der Oberfläche oder in Partikeln lokal sehr hohe Felder erzeugen kann. Dieses Feld zusammen mit dem einfallenden Licht regen das Molekül an und führen so zu einer verstärkten Raman-Streuung. Es werden Verstärkungen 106 bis 1010 diskutiert. Über der Oberfläche fällt dieser Effekt rasch ab (ca. mit Abstand r zur neunten Potenz, r9), aber das Molekül braucht nicht an der Oberfläche gebunden zu sein.
Wenn beide Effekte zusammen mit dem Resonanz-Raman-Effekt wirken, ist es möglich, Raman-Spektren einzelner Moleküle zu detektieren.
Siehe auch
Einzelnachweise
- ↑ A. Smekal: Zur Quantentheorie der Dispersion. In: Die Naturwissenschaften. 11, Nr. 43, 1923, S. 873-875.
- ↑ Chandrasekhara V. Raman: The molecular scattering of light. University of Calcutta, 1922 ([1]).
- ↑ G. Landsberg, L. Mandelstam: Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. In: Die Naturwissenschaften. 16, 1928, S. 557-558.
- ↑ F. Kohlrausch: Der Smekal-Raman-Effekt. J. Springer, Berlin 1931.
- ↑ M. Fleischmann, P. J. Hendra, A. J. McQuillan: Raman spectra of pyridine adsorbed at a silver electrode. In: Chem. Phys. Lett. 26, Nr. 2, 1974, S. 163–166 (doi:10.1016/0009-2614(74)85388-1).
- ↑ D. L. Jeanmaire, R. P. Van Duyne: Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. In: J. Electroanal. Chem. 84, Nr. 1, 1977, S. 1-20 (doi:10.1016/S0022-0728(77)80224-6).
- ↑ M. Grant Albrecht, J. Alan Creighton: Anomalously intense Raman spectra of pyridine at a silver electrode. In: Journal of the American Chemical Society. 99, Nr. 15, 1977, S. 5215-5217 (doi:10.1021/ja00457a071).
- ↑ Thomas Hellerer: CARS-Mikroskopie: Entwicklung und Anwendung. München, 2004 (Abstract & PDF ; Ludwig-Maximilians-Universität München, Fakultät für Chemie und Pharmazie, 2004).
Wikimedia Foundation.