- STEM
-
Ein Raster-Transmissionselektronenmikroskop (engl. Scanning Transmission Electron Microscope, STEM) ist ein Elektronenmikroskop, bei dem ein Elektronenstrahl auf eine dünne Probe fokussiert wird und zeilenweise ein bestimmtes Bildfeld abrastert. Als Bildsignal werden in der Regel die durch die Probe transmittierten Primärelektronen benutzt, deren Strom synchron zur Position des Elektronenstrahles gemessen wird. Der Bildentstehung nach handelt es sich um eine Unterform des Rasterelektronenmikroskops, der Untersuchungsgeometrie nach um ein Transmissionsmikroskop. An die Proben werden die gleichen Anforderungen bezüglich Durchstrahlbarkeit gestellt wie beim Transmissionselektronenmikroskop (TEM, zur Abgrenzung oft auch als Conventional Transmission Electron Microscope, CTEM, bezeichnet).
Es werden ähnliche Beschleunigungsspannungen wie beim TEM benutzt, nämlich etwa 100 (bis 300) kV. Als dediziertes Raster-Transmissionsmikroskop (dedicated STEM) bezeichnet man ein Elektronenmikroskop, das ausschließlich oder vorrangig zum Betrieb als STEM entworfen ist. Aber auch viele moderne TEM erlauben den Betrieb als STEM, diese Geräte werden daher oft als TEM/STEM bezeichnet.
Der Elektronenstrahl wird beim STEM durch ein System elektronenoptischer Linsen auf die Probe fokussiert. Dabei wird die letzte Linse als Objektiv bezeichnet. Im TEM/STEM ist das Objektivfeld oft nahezu symmetrisch zur Probenebene angeordnet. Das ist notwendig, weil - bedingt durch die Bauart - das Objektiv sowohl den Strahl fokussieren können (STEM) als auch die Probe elektronenoptisch abbilden können (TEM) muss. Im reinen STEM ist das Objektivfeld im Strahlengang hauptsächlich vor der Probe konzentriert. Die Ablenkung des Strahls für den Rastervorgang wird durch zwei Paare gekreuzter (magnetischer) Dipole bewirkt, damit lässt sich der Strahlort über die Probe schieben ohne den Einfallswinkel zu ändern.
Die detektierten Elektronen werden nach dem Winkelbereich klassifiziert, in den sie von der Probe gestreut werden. Man unterscheidet in Anlehnung an die Lichtmikroskopie Hellfeld- und Dunkelfeldelektronen (engl. Bright Field, BF, und Dark Field, DF). Der oder die BF-Detektoren liegen auf der optischen Achse des Mikroskops und erfassen die nicht oder in sehr kleine Winkel gestreuten Elektronen. Die DF-Detektoren sind in der Regel konzentrisch um die optische Achse des Mikroskops angeordnet, man bezeichnet sie dann als annulare Dunkelfelddetektoren (Annular Dark Field, ADF). Besonders häufig werden Detektoren für das sogenannte High Angle Annular Dark Field (HAADF) eingesetzt. Das HAADF-Signal ermöglicht oftmals die Unterscheidung von chemischen Elementen einfach anhand der Signalintensität, da die Streuung in den entsprechenden Winkelbereich annähernd mit dem Quadrat der Ordnungszahl skaliert. Für genügend dünne Proben hängt die HAADF-Intensität außerdem etwa linear von der durchstrahlten Probendicke ab.
Die Möglichkeit, mehrere Signale parallel zur Abbildung nutzen zu können, ist eine der besonderen Eigenschaften aller Rasterelektronenmikroskope.
Neben den BF- und DF-Signalen werden häufig Spektroskopien wie Energiedispersive Röntgenanalyse (engl. Energy Dispersive X-ray analysis, EDX) oder Elektronen-Energieverlustspektroskopie (engl. Electron Energy Loss Spectroscopy, EELS) zur Bestimmung der Verteilung und Konzentration chemischer Elemente eingesetzt.
Die für hochauflösende Untersuchungen nötigen Strahldurchmesser im Bereich von 1nm und darunter lassen sich nur erzielen, wenn die Elektronenquelle ausreichend kohärente Elektronen liefert. Dies wird nur durch sogenannte Schottky- und Feldemissionskathoden erreicht, nicht aber mit rein thermisch emittierenden Quellen. Schottkyquellen sind eine Mischform aus thermischen und Feldemissionsquellen, dabei wird durch eine moderate Heizung des Emitters eine Emission von Elektronen bei Feldstärken unterhalb der für Feldemission nötigen erreicht.
Der kleinste erzielbare Strahldurchmesser ist durch die Aberrationen des elektronenoptischen Systems zur Strahlfokussierung gegeben. Der Einsatz von Aberrationskorrektoren auf der Basis magnetischer Multipole (Sextupole, Oktupole) ermöglicht Ortsauflösungen von derzeit etwa 0,1 nm mit 100 kV Beschleunigungsspannung und 0,07 nm mit 300 kV; außer den elektronenoptischen Faktoren spielen hierbei auch mechanische Stabilität des Mikroskops sowie die Stabilität der Strahlablenkung eine Rolle. Der mit der Abnahme des Strahldurchmessers zwangsläufig zunehmende Konvergenzwinkel des Strahles kann eine Verbesserung der Tiefenauflösung (also der Ortsauflösung in Strahlrichtung) ermöglichen.
Wikimedia Foundation.