Saccharomyces cerevisiae

Saccharomyces cerevisiae
Backhefe
Backhefe (Saccharomyces cerevisiae)

Backhefe (Saccharomyces cerevisiae)

Systematik
Unterabteilung: Saccharomycotina
Klasse: Saccharomycetes
Ordnung: Saccharomycetales
Familie: Saccharomycetaceae
Gattung: Zuckerhefen (Saccharomyces)
Art: Backhefe
Wissenschaftlicher Name
Saccharomyces cerevisiae
Meyen ex E.C. Hansen 1883

Backhefe oder wissenschaftlich Saccharomyces cerevisiae (Synonym: Bierhefe, Bäckerhefe, Gest, Germ (in Österreich, mundartlich in Altbayern)) ist eine Knospungs-Hefe (engl. budding yeast). Backhefe hat, wie der wissenschaftliche Name besagt (lateinisch cerevisiae, deutsch vom Bier), ihren Ursprung in obergärigen Bierhefen. Saccharomyces kommt aus dem Altgriechischen und bedeutet „Zuckerpilz“. Zellen von Saccharomyces cerevisiae sind rund bis oval und haben einen Durchmesser von 5–10 µm. Sie vermehren sich durch den Prozess der Knospung.

Inhaltsverzeichnis

Wissenschaft

Der Eukaryot Saccharomyces cerevisiae ist wie der Prokaryot Escherichia coli ein Modellorganismus in der molekularbiologischen und zellbiologischen Forschung. Aufgrund der einfachen Kulturbedingungen und der Verwandtschaft der internen Zellstruktur zu anderen eukaryoten Zellen in der Pflanzen- und Tierwelt wird er zum Beispiel zur Untersuchung des Zellzyklus oder des Proteinabbaus verwendet. Saccharomyces cerevisiae war der erste eukaryotische Organismus, dessen Nukleinsäure-Basensequenz im Genom vollständig ermittelt wurde. Das Genom besteht aus 13 Millionen Basenpaaren und 6.275 Genen. Zu mehr als 23 % der Gene des Hefegenoms lassen sich homologe Gene im humanen Genom finden.

Ein nützliches Verfahren, bei dem Saccharomyces cerevisiae nicht als Modellorganismus fungiert, sondern als Werkzeug zur Erforschung von Wechselwirkungen von Proteinen ist das Hefe-Zwei-Hybrid-System.

Es gibt zwei große Datenbanken über das Hefegenom:

Stoffwechsel

Backhefe gilt als fakultativ anaerob, das bedeutet, die Energiegewinnung kann sowohl durch Sauerstoff-Atmung, als auch durch Gärung erfolgen. Backhefe verwendet für ihren Energiestoffwechsel als Ausgangsstoffe fast ausschließlich Zucker, Ausscheidungsprodukte sind im Wesentlichen Kohlenstoffdioxid aus der Atmung und der Gärung und Ethanol (Alkohol) aus der Gärung. Das Mengenverhältnis der Produkte ist davon abhängig, ob die Umgebung, in der sich die Hefe befindet, Sauerstoff enthält oder nicht, sowie von der Zucker-Konzentration im Medium (siehe Crabtree-Effekt). Bei der Produktion von Alkohol und der Verwendung als Treibmittel beim Backen ist der anaerobe Stoffwechsel entscheidend.

Die Bezeichnung der Backhefe als fakultativ anaerob ist nicht ganz korrekt, da für die Biosynthese von Ergosterin geringe Mengen an elementarem Sauerstoff benötigt werden.

Beim Vorhandensein größerer Mengen an gut verwertbaren organischen Stoffen (vor allem Zucker) tritt auch bei aerober Kultivierung fermentativer Stoffwechsel („Gärung“) auf. Dieses Phänomen wird als Crabtree-Effekt bezeichnet. Der Crabtree-Effekt mindert das Hefenwachstum und ist deshalb in der Regel bei der Hefeproduktion unerwünscht. Durch entsprechende Substratzuführung kann dieser minimiert werden (siehe Fed-Batch-Prozess).

Wenn der Backhefe kein Zucker mehr zur Verfügung steht, wird unter oxischen Bedingungen als Energiequelle die Oxidation des vorher selbst produzierten Ethanols mit Sauerstoff benutzt. Auf diese Weise kann sich die Hefe weiter vermehren, solange keine Hemmung durch zu große Ethanol-Konzentrationen oder eine Begrenzung durch den Mangel an anderen Nährstoffen (Phosphate, Aminosäuren) vorliegt.

Die beste Temperatur für die Gärung (den „Trieb“) der Hefe liegt bei etwa 32 °C. Zur Vermehrung der Hefe sind ungefähr 28 °C optimal. Bei guter Nährstoff‑ und Sauerstoffversorgung (aerob) verdoppelt sich die Hefemasse in einer Bierhefekultur in etwa 2 Stunden, der Zuwachs ist also bedeutend langsamer als bei vielen Bakterienarten. Bei anaerober Gärung läuft die Vermehrung erheblich langsamer ab. Bei Temperaturen über 45 °C beginnt Backhefe zu sterben.

Backhefe ist druckempfindlich. Wenn der Druck im Gärbehälter über 8 bar ansteigt, stellt Hefe ihre Gärtätigkeit ein. Dieser Effekt wird auch zur Steuerung des Gärprozesses genutzt.

Verwendung

Hefen der Gattung Saccharomyces werden in vielerlei Bereichen eingesetzt. Neben ihrer Verwendung beim Backen sind diese Hefen auch an der Gärung von Bier und Wein beteiligt. Ebenso dienen sie heutzutage bei der Herstellung von Ethanol-Kraftstoff und Cellulose-Ethanol. Außerdem wird Backhefe zur Biosorption von Schwermetallen wie Zink, Kupfer, Cadmium und Uran aus Abwässern verwendet. Die Schwermetalle lagern sich im Inneren und Äußeren der Zellen als Kristalle an und können chemisch von den Hefen abgesondert werden.[1]

In der Medizin wird Saccharomyces cerevisiae zur Behandlung von Durchfallerkrankungen eingesetzt. [2]

Herstellung

Grundlage für die industrielle Backhefe-Produktion sind zwei Dinge:

  1. Ein Hefestamm (Reinzuchthefe), der seit Jahrhunderten durch Auslese und Züchtung aus Sauerteighefen bzw. aus der Bierhefe von obergärigen Bieren gewonnen wurde. Backhefen zeichnen sich durch hohe Triebkraft und ein geringes Maß an Gluten-zerstörenden Enzymen aus. Durch die Weiterzüchtung ist die Bäckerhefe triebstärker als die wilden Hefen im Sauerteig, verträgt aber im Gegensatz zur Sauerteighefe viele andere Stoffe nicht: Säuren, Salze, Fette und anderes mehr.
  2. Ein Kulturmedium mit Melasse dient als Hauptbestandteil zur Vermehrung der Hefe.

Während der Hefestamm das Betriebsgeheimnis der jeweiligen Hefeproduzenten ist, ist der technische Ablauf der Hefevermehrung allgemein bekannt.

Um Massen von Mikroorganismen in Reinkultur herzustellen, werden sie in der Biotechnik in der Regel in mehrstufigen Kulturverfahren produziert. Ein einstufiges Verfahren, bei der ein großes Volumen eines Kulturmediums mit einer kleinen Menge der Organismen beimpft wird, ist aus mehreren Gründen sehr nachteilig. Würde so vorgegangen, würde eine großvolumige Anlage relativ lange Zeit für die Vermehrung benötigt. Das hätte folgende Nachteile:

  1. Technisch: Je größer eine Anlage ist, desto schwieriger ist es, das Eindringen von fremden, unerwünschten Mikroorganismen zu verhindern. Die Phase der Vermehrung in einer großen Anlage muss deshalb so kurz wie möglich gehalten werden
  2. Ökonomisch: Eine teure, große Anlage würde lange Zeit für die Vermehrung einer kleinen Menge von Mikroorganismen beansprucht, für deren Produktion auch kleinere, billigere Anlagen ausreichen.
  3. Biologisch: Kulturmedien sind nach ihrer Zubereitung meistens nicht optimal für die Vermehrung von Mikroorganismen (unter anderem zu hohes Redoxpotential, zu geringe Kohlenstoffdioxid-Konzentration, zu geringe Konzentration spezifischer Wachstumsstimulatoren). Die Organismen müssen erst durch ihren Stoffwechsel ein günstigeres Milieu schaffen. Das dauert bei einer kleinen Menge von Mikroorganismen in einem großen Kulturmediumvolumen sehr lange und das Wachstum würde zu Beginn stark verzögert.

Auch bei der Backhefe-Produktion wird deshalb die Vermehrung in mehreren Stufen geführt, zum Beispiel von einer Reagenzglaskultur über flüssige Kulturmedien mit 50 mL, 1 L, 10 L, 40 L, 400 L, 4 m3, 10 m3 und 200 m3. Die Abstufungen können auch anders sein.

Als Kulturmedium wird eine wässrige Lösung von 8–10 % Melasse verwendet. Melasse enthält etwa 50 % Zucker. Die Lösung wird mittels Säuren auf einen pH-Wert von etwa 4,5 gebracht, gekocht (damit fremde Mikroorganismen abgetötet werden) und gefiltert. Dann werden Nährsalze (hauptsächlich Ammoniumsalze und Phosphate) sowie Vitamine der B-Gruppe zugesetzt, da diese für das Hefewachstum benötigt werden und in der Melasse nicht in ausreichenden Mengen vorhanden sind. Die Kulturen werden aerob, das bedeutet unter Belüftung, geführt, um eine möglichst hohe Biomasse-Ausbeute zu erhalten.

Die ersten 4 Stufen bis etwa 40 L werden im Laboratorium geführt, wobei die Kultureinrichtungen sterilisiert werden, die Hefe also in Reinkultur vermehrt wird. Dies dauert etwa 8 Tage. Die nächsten 2 bis 3 Stufen bis etwa 10 m3 werden im Betrieb in einer stationären technischen Anlage geführt, der sogenannten Reinzuchtanlage, die ebenfalls sterilisiert wird (Heißdampf 120 °C unter 1 bar Überdruck), Dauer etwa 2 Tage. Für die letzten 2 Stufen werden wegen ihrer Größe (200 m3) nicht sterilisierte Anlagen verwendet, jedoch werden Fremdmikroorganismen weitgehend ausgeschlossen. Diese Kulturen dauern jeweils nur kurze Zeit (je 10 bis 20 Stunden) und werden mit einer hohen Hefekonzentration gestartet, so dass etwaige Fremdorganismen praktisch nicht zur Entwicklung kommen. Im angeführten Beispiel wird in der 200 m3-Stufe zunächst etwa 18 t „Stellhefe“ erhalten. Manchmal wird Stellhefe auch in zwei Stufen erzeugt. Aus der Stellhefe wird in einer letzten Phase, ebenfalls in einer 200 m3-Anlage, in etwa 10 Stunden die Versandhefe produziert, zum Beispiel in 4 Parallelkulturen mit je 200 m3 Medium etwa 65–70 t.

In etwa 11 Tagen wird so aus etwa 8 mg Ausgangsmasse mit etwa 33 Verdoppelungen die fast zehnmilliardenfache Hefemasse hergestellt.

Die Hefe wird mittels Separatoren konzentriert (ergibt sogenannte „Hefemilch“ oder „Hefesahne“) und je nach gewünschtem Ergebnis weiterverarbeitet:

Presshefe
Über Filterpressen oder Vakuumrotationsfilter wird die Hefemilch auf einen Trockenstoffanteil von etwa 30 % konzentriert. Anschließend wird die Masse durch eine Strangpresse ausgeformt und abgepackt. Ein Gramm Presshefe enthält etwa 1010 (10 Milliarden) Hefezellen.
Aktive Trockenhefe
Im Extruder wird Preßhefe zu kleinen Zylindern geformt, die dann im Wirbelschichtverfahren getrocknet werden.
Trockenhefe
Die restliche Hefemilch wird im Walzentrockner oder in einer Sprühgefriertrocknungsanlage getrocknet, wobei die enzymatische Aktivität komplett verloren geht, sodass diese Hefe hauptsächlich als Futtermittelzusatz oder für diätetische und kulinarische Zwecke (sogenannte Nährhefe) verwendet wird, bzw. als 7-g-Beutel verkauft werden.
Flüssighefe
Die Hefemilch wird in flüssiger Form auf die vom Kunden gewünschte Triebkraft eingestellt und dann per Tanklastwagen abgeholt.

Insgesamt fallen bei der Herstellung auf Melassebasis größere Mengen organischer und chemischer Stoffe sowie Mikroorganismen-haltiges Hefewasser an, die nach wie vor ein Entsorgungsproblem darstellen.

Zukunftsaussichten
In Entwicklung ist derzeit der Versuch, mit Hilfe der Gentechnik Hefe zur Bildung von Aromen (z. B. Vanille) zu veranlassen.

Dosierung der Backhefe

Backhefe wird, bezogen auf die Mehl-Menge, mit etwa 3 bis 6 % den Hefeteigen zugegeben. Schwere, d. h. vor allem fettreiche Teige bedürfen auf Grund der damit verbundenen geringeren Flüssigkeit – die Hefe benötigt für ihren Stoffwechsel u. a. Wasser – einer Dosierung von bis zu 8 %. Bei extrem langen Teigführungen oder Vorteigen liegt der Anteil der verwendeten Hefe bei etwa 1–2 %. Als optimale Nährbasis verwendet man Backmalz.

Handelsformen der Backhefe und ihre Haltbarkeit

Hefe wird als gepresste Frischhefe (Blockhefe), als Trockenhefe (Haltbarkeit etwa 1 Jahr) oder Flüssighefe angeboten. Zur Herstellung der Trockenhefe wird der von der Maische gereinigten Hefe sukzessive ein Großteil des Wassers entzogen. Meist wird der Emulgator Citrem (Ester der Citronensäure mit Monoglyceriden) zugegeben. Dieser soll eine zu starke Austrocknung der Hefezellen verhindern, damit die Zellen nur inaktiv werden, aber nicht absterben. So inaktivierte Hefe kann lange bei Raumtemperatur gelagert werden. Dennoch sollte man das auf die Packung gedruckte Haltbarkeitsdatum ernst nehmen, da die Fähigkeit der Hefezellen zur Reaktivierung im Laufe der Zeit verloren geht. Ein typisches 7-g-Päckchen Trockenhefe, wie es im Einzelhandel angeboten wird, besitzt etwa dieselbe Gärkraft wie 1/2 42-g-Päckchen Frischhefe.

Gewöhnliche Frischhefe behält bei einer Lagertemperatur von 2 bis 8 °C zehn bis zwölf Tage die volle Triebkraft. Ein permanenter Abbau von Kohlenhydratreserven und Eiweiß erhält die Lebensfunktionen der Hefe. Je mehr alte oder abgestorbene Zellen in einem Stück Hefe enthalten sind, desto schlechter wird die Triebkraft. Gleichzeitig treten Stoffe wie Glutathion aus der Zelle aus. Das führt zu einer Erweichung des Klebers (Gluten-Getreideprotein) im Teig. Alte Hefe ist auch bei höherer Dosierung somit praktisch unbrauchbar.

Frische Backhefe erkennt man an einer hellen, meist gelblichen Farbe. Sie hat einen angenehmen Geruch, einen süßlichen, intensiven Geschmack und einen festen muschelartigen Bruch. Alte Hefe ist braungrau, rissig, bröckelig, hat einen zunehmend bitteren Geschmack und unangenehmen Geruch.

Eine Alternative zur Verwendung der Backhefe ist Backferment.

Besondere Backhefe-Sorten

Für besondere Aufgaben werden Spezialzüchtungen verwendet, wie z. B. osmotolerante Hefen, die – bei sehr süßen Teigen – unempfindlicher gegen osmotischen Druck sind. Ökohefen (Sauerteighefen), welche auf einem Getreidenährboden gezüchtet werden, sind speziell geeignet für Menschen mit einer Hefeallergie, die im allgemeinen nur bei Industriehefen (auf Grund von Rückständen im Melassesubstrat der Hefeproduktion) vorkommt.

Siehe auch

Quellen

  1. B. Volesky, H. A. May-Phillips: Biosorption of heavy metals by Saccharomyces cerevisiae. In: Applied microbiology and biotechnology, Jg. 42, Nr. 5, 1995, ISSN 0175-7598, S. 797-806.
  2. Netdoktor: Mittel zur Regeneration der Darmschleimhaut und Wiederherstellung der normalen Darmflora, Stand 1.6.2008

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Saccharomyces cerevisiae — S. cerevisiae under DIC microscopy Scientific classification Kingdom …   Wikipedia

  • Saccharomyces cerevisiae — Saccharomyces cerevisiae …   Wikipédia en Français

  • Saccharomyces cerevisiae — Saccharomyces cerevisiae …   Википедия

  • Saccharomyces cerevisiae — Saccharomyces cerevisiae, la levadura de cerveza, es un hongo unicelular. Se trata de un tipo de levadura, también conocida como levadura de panadería o de la cerveza. Se divide por gemación y puede tener una reproducción asexual cuando se… …   Enciclopedia Universal

  • Saccharomyces cerevisiae — Saccharomyces cerevisiae. См. дрожжи. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • Saccharomyces cerevisiae —   Saccharomyces cerevisiae …   Wikipedia Español

  • Saccharomyces cerevisiae — Saccharomyces cerevisiae …   Wikipédia en Français

  • Saccharomyces cerevisiae — Alcohol Al co*hol ([a^]l k[ o]*h[o^]l), n. [Cf. F. alcool, formerly written alcohol, Sp. alcohol alcohol, antimony, galena, OSp. alcofol; all fr. Ar. al kohl a powder of antimony or galena, to paint the eyebrows with. The name was afterwards… …   The Collaborative International Dictionary of English

  • Saccharomyces cerevisiae or S cerevisiae — Saccharomyces cerevisiae or S. cerevisiae пекарские дрожжи; грибы, лишенные мицелия и существующие в виде отдельных почкующихся или делящихся клеток и их колоний, которые активно используются в генетических экспериментах. Предполагают, что на 17… …   Генетика. Энциклопедический словарь

  • Saccharomyces cerevisiae — Saccharomyces Sac cha*ro*my ces, n. [NL., fr. Gr. ? sugar + ?, ?, a fungus.] (Biol.) A genus of budding fungi, the various species of which have the power, to a greater or less extent, or splitting up sugar into alcohol and carbonic acid. They… …   The Collaborative International Dictionary of English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”