Seismische Tomographie

Seismische Tomographie

Die seismische Tomographie (oder Tomografie) ist eine Untersuchungsmethode der Seismologie und dient zur Bestimmung von Geschwindigkeitsanomalien der seismischen Wellenausbreitung im Erdinneren. Grundsätzlich werden methodisch drei verschiedliche Untersuchungsansätze in der Tomographie unterschieden: Lokalbebentomographie, teleseismische Tomographie und Dämpfungstomographie.

Inhaltsverzeichnis

Theoretischer Hintergrund

Tomographische Untersuchungen werden i.d.R. anhand von natürlichen Quellsignalen, den Erdbeben, durchgeführt, in selteneren Fällen werden hierfür künstlich generierte seismische Wellen benutzt.

Das Grundprinzip der Methode ist, dass die Laufzeit einer seismische Raumwelle von ihrem Ursprungsort – bei Erdbeben ist dies das Hypozentrum – zu einer Messstation von den Ausbreitungsgeschwindigkeiten entlang ihres Laufweges abhängt. Die Tomographie versucht nun, aus den an verschiedenen Messstationen bestimmten Laufzeiten des Wellenfeldes auf die Geschwindigkeitsverteilung das durchlaufenen Untergrundes zurückzuschließen.

Hierzu wird der von den seismischen Wellen durchstrahlte Teil des Erdkörpers in Volumenelemente unterteilt. Zu Beginn wird ein sogenanntes Startmodell erarbeitet, das auf vorausgegangenen Messungen (z. B. Reflexions- oder Refraktionsseismik) oder auf geologischen Beobachtungen basiert. Den Volumenelementen des Untersuchungsgebietes werden dann Geschwindigkeitswerte entsprechend dem Startmodell zugeordnet. Anhand der Strahlgeometrie können nun theoretische Laufzeiten berechnet und mit den gemessenen Daten verglichen werden.

Die auftretenden Differenzen zwischen beobachteten und theoretischen Laufzeiten (die sogenannten Laufzeitresiduen) entstehen durch lokale Abweichungen der tatsächlichen Geschwindigkeiten im Untersuchungsgebiet von dem vorgegebenen Geschwindigkeitsmodell (den Geschwindigkeitsanomalien). Ist die beobachtete Laufzeit größer als erwartet, hat die seismische Welle langsamere Bereiche durchlaufen und umgekehrt. Durch eine schrittweise Anpassung der Werte in den Volumenelementen soll schließlich eine Minimierung der Residuen erreicht werden, so dass am Ende die Verteilung der Geschwindigkeitsanomalien im Untergrund möglichst genau wiedergegeben werden kann.

Die Laufzeitresiduen geben dabei immer die Summe aller Effekte entlangt des Laufweges wieder. Da eine Welle aber nacheinander mehrere sowohl positive als auch negative Anomalien durchlaufen kann, ist für eine erfolgreiche Tomographie die Überdeckung von entscheidender Wichtigkeit. D. h. das Untersuchungsgebiet muss von möglichst vielen Wellenstrahlen aus möglichst vielen unterschiedlichen Richtungen durchlaufen werden, um eine optimale Erfassung der Volumenelemente in verschiedenen Kombinationen zu erreichen. Nur so können Anomalien korrekt lokalisiert werden.

Lokalbebentomographie

Bei diesem Ansatz der Tomographie wird das zu untersuchende Gebiet mit Signalen aus geringer Entfernung untersucht. Die Verwendung lokaler Erdbebenereignisse hat den Vorteil, dass Laufwegeffekte auf Grund der räumlichen Nähe zum registrierenden Seismometer allein aus dem Untersuchungsgebiet stammen. Andererseits ist die Methode auf eine hohe Seismizität angewiesen und damit auf seismisch aktive Gebiete beschränkt. Alternativ könnte die Anregung seismischer Wellen mit künstlichen Quellen wie z. B. Sprengungen erfolgen. Diese sind jedoch mit hohen Kosten verbunden, so dass hiervon auf Grund der erforderlichen Vielzahl von Sprengungen bei gleichzeitig eingeschränkter Eindringtiefe in den Erdkörper eher selten Gebrauch gemacht wird.

Teleseismische Tomographie

Die teleseismische Tomographie verwendet hingegen Erdbeben aus größerer Distanz. Da diese weltweit aufgezeichnet werden, unterliegt diese Methode einer weitaus geringeren räumlichen Einschränkung und kann nahezu überall angewendet werden. Ein weiterer Vorteil liegt in der Strahlgeometrie: teleseismische Erdbebenwellen durchlaufen auch tiefere Erdschichten bis in den tiefen unteren Mantel und lassen daher auch Untersuchungen in diesen Regionen des Erdkörpers zu. Das Auflösungsvermögen der teleseimischen Tomographie ist allerdings in größeren Tiefen meist sehr gering. Zudem ist die Datenbasis auch hier durch die limitierte räumliche Verteilung von Erdbebenherden eingeschränkt, die eine optimale Überdeckung oftmals nicht erlaubt. Zusätzlich können hier auch Laufzeitresiduen einfließen, deren Ursprung nicht im Untersuchungsgebiet sondern nahe der Erdbebenherde liegt, bei der tomographischen Inversion jedoch bei Anpassung der Geschwindigkeiten in den Volumenelementen miteinfließen.

Dämpfungstomographie

Bei der Dämpfungstomopraphie fließt das Dämpfungsverhalten des Untergrundes in die Untersuchung ein, also die Abnahme der Wellenenergie entlang des Laufweges. Da auch Dämpfungseffekte von den elastischen Eigenschaften des von der seismischen Welle durchlaufenen Gesteins abhängen, lassen auch deren Anomalien Rückschlüsse auf das untersuchte Gebiet zu.

Interpretationsansätze

Anomalien der seismischen Geschwindigkeiten und auch der Dämpfung sind häufig auf Temperaturänderungen zurückzuführen, wie sie z. B. durch heißes Magma oder partielle Schmelze in vulkanischen Gebieten oder durch kalte Lithosphären-Bruchstücke oder abtauchende Platten in Subduktionszonen ausgelöst werden können.

Veränderungen der elastischen Parameter können jedoch auch andere geologische oder mineralogische Ursachen haben. Die Porenfüllung von Gesteinen, etwa mit Erdöl, Wasser oder anderen Fluiden, aber auch leichte chemische Veränderungen der Minerale können hier eine Rolle spielen. Die Interpretation tomographischer Ergebnisse erfolgt daher meist vor dem geologischen Hintergrund des Untersuchungsgebietes.

Literatur

  • K. Aki & W. Lee (1976): Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, Part 1. A homogeneous initial model. Journal of Geophysical Research, Vol. 81, pp. 4381-99 (englisch)
  • K. Aki (1993): Seismic Tomography: Theory and practice. (Ed. H. M. Iyer und K. Hirahara), Chapman and Hall, London pp. 842 (englisch)
  • E. Kissling (1988): Geotomography with local earthquakes. Reviews of Geophysics, Vol. 26, pp. 659-698 (englisch)
  • M. Koch (1982): Seismicity and structural investigations of the Romanian Vrancea region: Evidence for azimuthal variations of P-wave velocity and Poisson's ratio. Tectonophysics, Vol. 90, pp. 91 -115 (englisch)
  • M. Koch (1985): A theoretical and numerical study on the determination of the 3D-structure of the lithosphere by linear and nonlinear inversion of teleseismic travel times. Geophys. J. R. Astr. Soc, Vol. 80, pp. 73 - 93 (englisch)
  • C. H.  Thurber (1993): Local earthquake tomography: velocities and vp/vs-theory; in: Seismic Tomography: Theory and practice. (Ed. H. M. Iyer und K. Hirahara), Chapman and Hall, London pp. 563-583 (englisch)

Quellen

  • Mirjam Bohm (2004): 3-D Lokalbebentomographie der südlichen Anden zwischen 36° und 40°S, Dissertationsschrift
  • Benjamin Heit (2005): Teleseismic tomographic images of the Central Andes at 21°S and 25.5°S, Dissertationsschrift (englisch)

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • seismische Tomographie — seisminė tomografija statusas T sritis Standartizacija ir metrologija apibrėžtis Žemės mantijos nevienalytiškumo radimo būdas matuojant seisminių bangų sklidimo įvairiomis kryptimis greičių ir dažnių pokyčius. atitikmenys: angl. seismic… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Tomographie — Unter dem Begriff Tomografie bzw. graphie (von altgr. τομή, tome, „Schnitt“ und γράφειν, graphein, „schreiben“) werden verschiedene bildgebende Verfahren zusammengefasst, welche die räumliche Struktur eines Objektes durch ein… …   Deutsch Wikipedia

  • tomographie sismique — seisminė tomografija statusas T sritis Standartizacija ir metrologija apibrėžtis Žemės mantijos nevienalytiškumo radimo būdas matuojant seisminių bangų sklidimo įvairiomis kryptimis greičių ir dažnių pokyčius. atitikmenys: angl. seismic… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Seismische Tomografie — Die seismische Tomografie (oder Tomographie) ist eine Untersuchungsmethode der Seismologie und dient zur Bestimmung von Geschwindigkeitsanomalien der seismischen Wellenausbreitung im Erdinneren. Grundsätzlich werden methodisch drei… …   Deutsch Wikipedia

  • Seismologie — Die Seismologie (griechisch σεισμός seismós, Erderschütterung und logie) ist die Lehre von Erdbeben und der Ausbreitung seismischer Wellen in Festkörpern. Als Teilgebiet der Geophysik ist sie die wichtigste Methode, um die Struktur des tiefen… …   Deutsch Wikipedia

  • Seismologe — Die Seismologie (v. griech. σεισμός (seismós) = Erderschütterung) ist in der Geophysik die Lehre von Erdbeben, der Ausbreitung seismischer Wellen und der Bestimmung der Struktur des Erdinnern. Ein verwandtes Forschungsgebiet ist die… …   Deutsch Wikipedia

  • Manteldiapir — Hotspot Vulkanismus wird durch Plumes aus Quellen im tieferen Erdmantel gespeist Mantelplume (kurz auch Plume, aus dem englischen/französischen für „Helmbusch“, „Federschmuck“, „Rauchfahne“) ist ein geowissenschaftlicher Fachbegriff, der einen… …   Deutsch Wikipedia

  • Manteldiapire — Hotspot Vulkanismus wird durch Plumes aus Quellen im tieferen Erdmantel gespeist Mantelplume (kurz auch Plume, aus dem englischen/französischen für „Helmbusch“, „Federschmuck“, „Rauchfahne“) ist ein geowissenschaftlicher Fachbegriff, der einen… …   Deutsch Wikipedia

  • Mantelplume — Hotspot Vulkanismus wird durch Plumes aus Quellen im tieferen Erdmantel gespeist Mantelplume (kurz auch Plume, aus dem englischen/französischen für „Helmbusch“, „Federschmuck“, „Rauchfahne“) ist ein geowissenschaftlicher Fachbegriff, der einen… …   Deutsch Wikipedia

  • Mantle Plume — Hotspot Vulkanismus wird durch Plumes aus Quellen im tieferen Erdmantel gespeist Mantelplume (kurz auch Plume, aus dem englischen/französischen für „Helmbusch“, „Federschmuck“, „Rauchfahne“) ist ein geowissenschaftlicher Fachbegriff, der einen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”