Si-Funktion

Si-Funktion

Der Sinus cardinalis, auch sinc-Funktion, Kardinalsinus oder Spaltfunktion ist eine mathematische Funktion welche nicht normiert als

Darstellung der normierten (blau) und nicht normierten (rot) sinc-Funktion
\mathrm{si}(x) = \mathrm{sinc}(x) = \frac{\sin (x)}{x}

definiert wird. In der Informationstheorie und der digitalen Signalverarbeitung, einen wichtigen Anwendungsgebiet der sinc-Funktion, findet hingegen meist die normierte Form:

\mathrm{si}(x) = \mathrm{sinc}(x) = \frac{\sin (\pi x)}{\pi x}

Anwendung. Neben sinc ist insbesondere in deutschsprachiger Fachliteratur auch die Abkürzung si gebräuchlich, welche nicht mit dem Integralsinus Si(x), der Stammfunktion der sinc-Funktion, zu verwechseln ist.

Inhaltsverzeichnis

Allgemeines

An der hebbaren Singularität bei x=0 wird die Funktion durch den Grenzwert sinc(0)=1 fortgesetzt, der sich aus der Regel von L'Hospital ergibt; manchmal wird die Definitionsgleichung auch mit Fallunterscheidung geschrieben.

Softwarepakete wie Matlab verwenden die normierte sinc-Funktion welche sich auch als Produkt oder mit Hilfe der Gammafunktion Γ ausdrücken lässt als:

\frac{\sin(\pi x)}{\pi x} = \prod_{n=1}^\infty \left(1 - \frac{x^2}{n^2}\right) = \frac{1}{\Gamma(1+x)\Gamma(1-x)}

Die Taylorreihe der sinc-Funktion lässt sich unmittelbar aus der sin-Funktion ableiten zu:

 \frac{\sin(x)}{x} = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n+1)!}

Darstellung als Fouriertransformierte der Rechteckfunktion

Die sinc-Funktion ist die Fouriertransformierte der Rechteckfunktion

\mathrm{rect} \left(\frac{t}{\tau} \right) =\chi_{[-\tau/2,\tau/2]}(t)
      := \begin{cases}1 & |t|\le\tau/2 \\ 0 & \mathrm{sonst} \end{cases}

denn es gilt

 \mathcal F(\chi_{[-\tau/2,\tau/2]})(\omega)
       = \frac1{\sqrt{2\pi}}\int \limits_{-\tau/2}^{\tau/2} e^{-\mathrm{i} \omega t}\, \mathrm dt 
       = \frac1{\sqrt{2\pi}}\,\tau \,\mathrm{sinc} \left( \frac{\omega \tau}{2} \right).

Aus den Eigenschaften der Fourier-Transformation folgt, dass die sinc-Funktion analytisch und damit beliebig oft stetig differenzierbar ist. Aus der Plancherel-Identität der Fourier-Transformation folgt weiter, dass sie orthogonal zu Verschiebungen ihrer selbst um ganzzahlige Vielfache von π ist, es gilt

\langle \mathrm{sinc}(x-k\pi), \, \mathrm{sinc}(x-l \pi)\rangle
       =\frac\pi2 \int_{-1}^1e^{-\mathrm{i}(l-k)\pi t} \, \mathrm dt=\pi\mathrm{sinc}((l-k)\pi)
       =\pi\delta_{l,k}
,

wobei δl,k das Kronecker-Delta bezeichnet.

Mit einer passenden Normierung bilden diese Verschiebungen der sinc-Funktion also ein Orthonormalsystem im Funktionenraum L^2(\R). Die Projektion auf den von den sinc(x - kπ) aufgespannten Unterraum ergibt sich als

P(f)(x)=\frac1\pi\sum_{k=-\infty}^\infty \langle f(t),\,\mathrm{sinc}(t-k\pi)\rangle\;\mathrm{sinc}(x-k\pi).

Aufgrund der Interpolationseigenschaft gilt P(f)(n\pi)=\frac1\pi\langle f(t),\,\mathrm{sinc}(t-n\pi)\rangle\;, also

P(f)(x)=\sum_{k=-\infty}^\infty P(f)(k\pi)\;\mathrm{sinc}(x-k\pi).

Funktionen aus diesem Unterraum sind also durch ihre Werte an den Stellen \{k\pi:k\in\Z\} eindeutig bestimmt.

Die Rechteckfunktion als Fouriertransformierte der sinc-Funktion hat beschränkten Träger, ist daher samt der Linearkombinationen ihrer Verschiebungen bandbeschränkt. Umgekehrt ist jede bandbeschränkte als eine solche Linearkombination darstellbar, und daher durch die Funktionswerte an den genannten Stützstellen eindeutig bestimmt. Das ist die Aussage des WKS-Abtasttheorems.

Aufbaufunktion zur Signalrekonstruktion

Die sinc-Funktion hat insbesondere in der Signalverarbeitung eine große Bedeutung. Sie tritt in der sogenannten Samplingreihe (oder Kardinalreihe, E. T. Whittaker 1915) auf, mit Hilfe derer ein kontinuierliches bandbeschränktes Signal x aus seinen Abtastwerten x(kΔt) rekonstruiert bzw. eine beliebige Stützstellenfolge zu einem kontinuierlichen Signal fortgesetzt wird:

x(t)=\sum_{k=-\infty}^{\infty}{ x(k \Delta t) \cdot \mathrm{sinc} \left( \frac{\pi}{\Delta t} (t-k \Delta t)  \right)}.

Diese ist die Interpolationsformel geringster Schwankung, d. h. das Frequenzspektrum ist beschränkt und hat die kleinstmögliche höchste (Kreis-)Frequenz \frac{\pi}{\Delta t} bzw. Frequenz \frac1{2\Delta t}. Hat das Ausgangssignal Anteile höherer Frequenzen, so ist die Folge dieser Abtastwerte zu grobmaschig, die hochfrequenten Anteile werden in zusätzliche niederfrequente Anteile umgesetzt, d. h. es tritt Aliasing (Fehlzuordnung der Frequenzanteile) auf.

Beugung am Spalt

Bei der Beugung von Wellen an einem Spalt bilden die Amplituden ein Beugungsmuster, das sich durch Fouriertransformation einer rechteckigen Öffnungsfunktion erklären lässt. Deshalb wird der Kardinalsinus auch als Spaltfunktion bezeichnet. Die bei der Beugung von Licht vom Auge wahrgenommene Helligkeitsverteilung ist allerdings das Quadrat der Wellenamplitude; sie folgt daher der quadrierten Funktion \operatorname{sinc}^2.

Ableitungen

Die n-te Ableitung von

\mathrm{sinc}(x) = \frac{\sin (x)}{x}

lässt sich für alle x ≠ 0 analytisch bestimmen zu:

\frac{\mathrm{d}^n \mathrm{sinc}(x)}{\mathrm{d}\,x^n} = \sum_{m=0}^n \frac{n!}{m!} (-1)^{n-m} \frac{\mathrm{d}^m \,\mathrm{sin}\,x}{\mathrm{d}\,x^m} \frac{1}{x^{n-m+1}}

Die daraus gebildeten ersten zwei Ableitungen lauten:

\frac{\mathrm{d}\,\mathrm{sinc}\,x}{\mathrm{d}\,x} = \frac{\mathrm{cos}\,x}{x} - \frac{\mathrm{sin}\,x}{x^2}
\frac{\mathrm{d}^2\,\mathrm{sinc}\,x}{\mathrm{d}\,x^2} = - \frac{\mathrm{sin}\,x}{x} - \frac{2\,\mathrm{cos}\,x}{x^2} + \frac{2\,\mathrm{sin}\,x}{x^3}

Nullstellen

\mathrm{sinc}(x) = \frac{\sin (x)}{x}=0 gilt für  \ x \in \{n\pi \ | \ n \in \{\pm 1,\pm 2,... \} \}
\mathrm{sinc}(x) = \frac{\sin (\pi x)}{\pi x}=0 gilt für  \ x \in \{\pm 1,\pm 2,... \}

Maxima

\mathrm{sinc}(x) = \frac{\sin (x)}{x} hat Maxima bei  \ x \in \{0, \approx7.7252518, \approx14.066194, \approx20.371303, \approx26.666054, \approx32.956389, \approx39.244432, ... \}

Minima

\mathrm{sinc}(x) = \frac{\sin (x)}{x} hat Minima bei  \ x \in \{\approx4.4934095, \approx10.904122, \approx17.220755, \approx23.519452, \approx29.811599, \approx36.100622, ... \}


Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Funktion und Begriff — ist neben Über Sinn und Bedeutung und Über Begriff und Gegenstand einer der drei kurz hintereinander erschienen Aufsätze von Gottlob Frege, in denen er grundlegende Begriffe seiner Logik und Sprachphilosophie erläutert. Funktion und Begriff… …   Deutsch Wikipedia

  • Funktion — (von lat. functio ‚Tätigkeit‘, ‚Verrichtung‘) steht für: die Aufgabe eines Objektes, siehe Funktion (Objekt) Aufgabe und Zweck eines Systems, siehe Funktion (Systemtheorie) eine Abbildung zwischen Mengen, siehe Funktion (Mathematik) eine… …   Deutsch Wikipedia

  • Funktion (Programmierung) — Funktion (engl.: function) ist in der Informatik die Bezeichnung eines Programmkonstrukts. Unterscheidungsmerkmal einer Funktion im Vergleich zum ähnlichen Konstrukt der Prozedur ist es, dass die Funktion ein Resultat zurückliefert und deshalb im …   Deutsch Wikipedia

  • Funktion — Sf std. (17. Jh.) Entlehnung. Entlehnt aus l. fūnctio Verrichtung, Obliegenheit , Abstraktum zu l. fungī verrichten (fungieren). Hierzu Ableitungen, die semantisch z.T. stark auseinanderfallen, weil die zugehörigen Wörter teils unmittelbar aus… …   Etymologisches Wörterbuch der deutschen sprache

  • Funktion [1] — Funktion (lat.), Tätigkeit, Verrichtung, besonders amtliche, wird auch von unständiger, im Gegensatze zu dauernder Amtsübertragung gebraucht; Verrichtung eines körperlichen Organs; funktionieren (fungieren), Amtsgeschäfte verrichten, in F. sein;… …   Meyers Großes Konversations-Lexikon

  • Funktion [2] — Funktion bezeichnet in der Mathematik, aber auch sonst die Abhängigkeit einer Größe von einer oder von mehreren andern. So ist der Flächeninhalt eines Quadrats eine F. der Seite des Quadrats, der Widerstand, den ein aus einem Geschütz… …   Meyers Großes Konversations-Lexikon

  • Funktion — (lat.), Verrichtung (in einem bestimmten Wirkungskreis), Wirksamkeit. In der Mathematik heißt F. einer veränderlichen Größe eine von dieser abhängige Größe, die aus einem gegebenen Wert jener Veränderlichen berechenbar ist. Diese abhängige Größe… …   Kleines Konversations-Lexikon

  • funktion — • funktion, tjänstgöring, befattning, uppgift, uppdrag, göromål …   Svensk synonymlexikon

  • Funktion — »Tätigkeit, Wirksamkeit; Aufgabe«: Das Substantiv wurde im 17. Jh. aus lat. functio »Verrichtung; Geltung« entlehnt, das von lat. fungi »verrichten, vollbringen; gelten« abgeleitet ist (vgl. ↑ fungieren). – Dazu: Funktionär »führender aktiver… …   Das Herkunftswörterbuch

  • Funktion — Funktion …   Deutsch Wörterbuch

  • Funktion (Mathematik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x Wert) genau ein Element der anderen Menge (Funktionswert, abhängige Variable, y… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”