- Social Choice
-
Die Sozialwahltheorie (engl. Social Choice Theory), auch Theorie kollektiver Entscheidungen (engl. Theory of Collective Choice) genannt, beschäftigt sich mit Gruppenentscheidungen durch Aggregation von individuellen Präferenzen/Entscheidungen zu einer kollektiven Präferenz/Entscheidung in Form von Abstimmungen und Wahlen und mit den dabei entstehenden Problemen und Paradoxien und deren Vermeidung, Wahrscheinlichkeit und Lösung.
Das „Problem der zyklischen Mehrheiten“ (Condorcet-Paradoxon) und die „Methode der paarweisen Abstimmung“ (Condorcet-Methode) werden meist als Einführung in die Sozialwahltheorie verwendet. Andere Beispiele sind die Borda-Wahl und das Ostrogorski-Paradox.
Die Sozialwahltheorie ist ein interdisziplinäres und „heimatloses“ Forschungsfeld, das v. a. von Vertretern der Mathematik, Volkswirtschaftslehre, Politikwissenschaft, Psychologie, Philosophie und Rechtswissenschaft betrieben wird. Die Sozialwahltheorie (Social Choice Theory) wird bisweilen mit der Theorie der rationalen Entscheidung verwechselt bzw. fälschlicherweise gleichgesetzt; darüber hinaus bestehen Überschneidungen zu der Public Choice Theorie.
Inhaltsverzeichnis
Historisches
Als Hauptbegründer und Pioniere der Sozialwahltheorie in der Mitte des 20. Jahrhunderts gelten die Ökonomen Kenneth Arrow und Duncan Black. Der spätere Nobelpreisträger Arrow bewies in seinem Arrow-Theorem mathematisch, dass es keine „perfekte“ demokratische Aggregationsregel gibt. Black entdeckte bei seinen Forschungen, unabhängig von Arrow, historische Vorgänger, die sich mit Problemen bei Wahlverfahren beschäftigt hatten. So stellte er die in Vergessenheit geratenen Arbeiten von Jean Charles Borda, Marquis de Condorcet und Charles Lutwidge Dodgson vor.
Andere Forscher fanden heraus, dass bereits im Mittelalter analytische Studien zu Wahlverfahren und Wahlregeln unternommen wurden, u. a. von Ramon Llull und Nikolaus von Kues.
Im ganzen 19. und frühen 20. Jahrhundert beschäftigten sich v. a. Rechtswissenschaftler mit Aggregationsverfahren, insbesondere bei der äußerst lebhaft geführten Diskussion um die Abstimmungsmethode in Richterkollegien („Totalabstimmung“ oder „Abstimmung nach Gründen“) und bei der Einführung und Ausgestaltung des Verhältniswahlrechts.
Methoden
In der Sozialwahltheorie kommt eine analytische, mathematisch formale Sprache und Methode zum Einsatz; Relationen haben hierbei eine wichtige Bedeutung. Dabei wird häufig mit Annahmen und Vereinfachungen, v. a. bei der Modellierung individueller Präferenzen, gearbeitet.
- Die axiomatische Sozialwahltheorie untersucht Eigenschaften von Wahlverfahren und stellt Bedingungen auf (z. B. Einschränkungen von Präferenzen), unter denen keine Wahlprobleme auftreten. Diese Theoreme versucht sie u. a. mit Hilfe der Logik und der Mengenlehre mathematisch zu beweisen. Die bekanntesten und bedeutendsten Theoreme der Sozialwahltheorie sind das Arrow-Theorem und das Gibbard-Satterthwaite-Theorem.
- Die probabilistische Sozialwahltheorie versucht mittels Wahrscheinlichkeitsrechnung, Kombinatorik und Geometrie die Wahrscheinlichkeit von Wahlproblemen und Paradoxien zu ermitteln.
Die Beschränkungen der Sozialwahltheorie beruhen zum einen darauf, dass sie Koalitionsbildung und strategisches Abstimmungsverhalten, die bei Wahlen weit verbreitet sind, nur ungenügend berücksichtigt. Stattdessen wird meist von der – unrealistischen – Annahme ausgegangen, dass die Beteiligten Einstellungen bei der Stimmabgabe „aufrichtig“ ausdrücken (s. u. den Abschnitt zu „heresthetics“).
Einführung und einfache Erkenntnisse
Bedeutung der Aggregationsregel
Eine einfache Erkenntnis der Sozialwahltheorie ist, dass das Resultat von Wahlen und Abstimmungen auch von der verwendeten Aggregationsregel abhängt. So können verschiedene Aggregationsverfahren bei identischen (individuellen) Präferenzen höchst unterschiedliche Wahlergebnisse zur Folge haben. Zum Beispiel kann bei einer Wahl mit mehr als zwei Kandidaten der Kandidat, der bei einer Wahl mit relativer Mehrheit siegreich ist, bei einer paarweisen Wahlmethode (Condorcet-Methode) gegen alle anderen verlieren und somit den letzten Platz belegen.
Wahlbeispiel
Gegeben sei eine Gruppe von n=21 Personen, die aus m=3 Kandidaten {A,B,C} einen Vorsitzenden wählen. Die Mitglieder der Gruppe haben folgende Präferenzen.
erste Präferenz a a b b c c zweite Präferenz b c a c a b dritte Präferenz c b c a b a Präferenzordnung von x Personen 6 0 5 2 5 3 Erklärung: 6 Personen haben die Präferenz: a vor b, a vor c und b vor c. (Die Kleinschreibung der Buchstaben zeigt individuelle Präferenzen an.)
Das Wahlergebnis ist bei diesem Beispiel besonders abhängig von der Wahlmethode:
- Bei der Methode der einfachen Mehrheit (Pluralitätswahl) gewinnt Kandidat C mit 8 Stimmen. Kandidat B erreicht 7 und Kandidat A 6 Stimmen. Wahlergebnis: C vor B vor A.
- Bei der Methode der paarweisen Abstimmungen (Condorcet-Methode) gewinnt Kandidat A gegen jeden anderen Kandidaten. Kandidat C verliert gegen jeden anderen. Wahlergebnis: A vor B vor C.
- Bei der Borda-Wahl entsteht folgendes Wahlergebnis. Kandidat B erreicht 44 Stimmen, Kandidat A 43 und Kandidat C 39 Stimmen. Wahlergebnis: B vor A vor C.
Wenn man allerdings die Bildung von Koalitionen in die Analyse mit einbezieht, so ergibt sich, dass sich ein vorhandener Condorcet-Sieger, auch Mehrheitsalternative genannt, in allen Wahlverfahren durchsetzt, in denen die Beteiligten gleiches Stimmengewicht haben. Voraussetzung dafür ist allerdings, dass die Beteiligten die Präferenzen der anderen Beteiligten kennen und so abstimmen, dass das von ihnen bevorzugte Ergebnis herauskommt.
Allgemeine Aggregationsprobleme
Voraussetzungen
Vereinfacht dargestellt, können Aggregationsprobleme und Paradoxien bei folgenden Bedingungen auftreten:
- es stehen mehr als zwei Kandidaten/Alternativen zur Wahl/Abstimmung,
- die individuellen Präferenzen sind nicht homogen und
- kein Kandidat bzw. keine Alternative verfügt über eine absolute Mehrheit.
Qualitätskriterien
Es gibt zahlreiche Aggregationsverfahren (s. u. „Liste der Sozialwahlverfahren“). Die Sozialwahltheorie hat eine Reihe von Kriterien entwickelt, mit deren Hilfe die Vor- bzw. Nachteile einzelnen Verfahren charakterisiert werden. Die wichtigsten sind:
Keine Diktatur: Die gesellschaftliche Entscheidung darf nicht lediglich von den Präferenzen eines einzelnen Individuums abhängen. Laut demokratischen Wertvorstellungen sollten vielmehr alle Teilnehmer gleichberechtigt sein.
Vollständigkeit: Das Verfahren muss beliebig viele Entscheidungsalternativen und beliebig viele Teilnehmer erlauben. Die individuellen Präferenzanordnungen der einzelnen Teilnehmer dürfen keinen Restriktionen unterliegen.
Unabhängigkeit von irrelevanten Alternativen: Die gesellschaftliche Rangordnung zweier Alternativen muss unabhängig von möglicherweise weiteren zur Verfügung stehenden Alternativen und deren Bewertung sein.
Unabhängigkeit von Klon-Alternativen: Das Ergebnis des Verfahrens wird nicht verändert, wenn bestehende Alternativen in der Liste mehrmals angeführt werden.
Majoritätskriterium: Falls eine absolute Mehrheit in der Gruppe eine bestimmte Alternative wünscht, setzt sie sich sicher durch.
Konsistenzkriterium: Falls die Liste der Entscheidungsalternativen geteilt wird und eine Alternative, die in allen Listen aufscheint, durch das Verfahren dort jeweils bestgereiht ist, wird diese Alternative auch in der Gesamtliste bestgereiht sein.
Condorcet-Kriterium: Falls eine bestimmte Alternative im paarweisen Vergleich gegenüber allen anderen Alternativen bevorzugt wird, wird sie auch in der gesamten Liste aller Alternativen bestgereiht sein.
Schwaches Pareto-Prinzip: Wenn alle Individuen eine Alternative X gegenüber Y vorziehen, so muss das auch für die kollektive Präferenz gelten.
Condorcet-Verlierer-Kriterium: Falls eine bestimmte Alternative im paarweisen Vergleich gegenüber allen anderen Alternativen schlechter gereiht wird, wird sie auch in der gesamten Liste aller Alternativen schlechtest gereiht sein.
Transitivitätskriterium: Aus (Alternative X bevorzugt gegen Alternative Y) und (Alternative Y bevorzugt gegen Alternative Z) folgt (Alternative X bevorzugt gegen Alternative Z).Nicht alle dieser Kriterien sind voneinander unabhängig bzw. gleich stark. So folgt z. B. aus der Gültigkeit des Konsistenzkriteriums unmittelbar die Gültigkeit des Condorcetkriteriums, umgekehrt ist dies nicht der Fall.
Liste/wichtigste Eigenschaften der Sozialwahlverfahren
- Die Mehrheitswahl oder der Mehrheitsentscheid (plurality voting): Jeder Teilnehmer gibt seine Stimme einer einzigen Alternative. Er kann seine Präferenzen nicht feiner abgestuft ausdrücken.
- ==> Die Unabhängigkeit von irrelevanten Alternativen ist nicht gegeben
- Die Vorzugswahl (preferential voting, ranked voting): Jeder Teilnehmer ordnet die Alternativen gemäß seinen individuellen Präferenzen in eine Reihenfolge. Dies ist eine feinere Abstufung als bei der Mehrheitswahl, aber der Teilnehmer hat keine Möglichkeit die Intensität seiner Präferenzen auszudrücken.
- Beispiele dafür wären: Borda-Wahl, Condorcet-Methode, Coombs-Wahl, Instant-Runoff-Voting (IRV), Ranked Pairs, Schulze-Methode, Bucklin voting, und weitere.
- ==> Für sämtliche Verfahren der Vorzugswahl gelten die Einschränkungen des Arrow’schen Unmöglichkeitstheorems beziehungsweise des Gibbard-Satterthwaite-Theorems.
- Die Punktewertung (range voting, rated voting): Jeder Teilnehmer bewertet sämtliche Alternativen mit Punkten aus einem vorgegebenen Intervall. Dies erlaubt es dem Teilnehmer, Reihung und Intensität seiner Präferenz für die jeweilige Alternative auszudrücken.
- ==> Das Condorcet-Kriterium, das Condorcet-Verlierer-Kriterium, das Konsistenzkriterium und das Majoritätsprinzip sind nicht erfüllt.
Heresthetik: Die Kunst der politischen „Manipulation“
Unerfüllte Qualitätskriterien (s. oben) können dazu führen, dass die Wähler nicht ihre „wahre“ individuelle Entscheidung zum Ausdruck bringen, sondern „wahltaktischen“ Überlegungen folgen um einem bestimmten Effekt zu erzielen (s. Gibbard-Satterthwaite-Theorem). Hierbei handelt es sich also um „taktisches/strategisches“ Wählen.
Unerfüllte Qualitätskriterien erlauben ferner legale Verfahren und Methoden zur Beeinflussung und „Manipulation“ des Wahlergebnisses. Beispiele wären das Einbringen von weiteren Wahlalternativen, falls die Unabhängigkeit von irrelevanten Alternativen nicht gegeben ist, oder die Kontrolle über die Reihenfolge der Wahlen, insbesondere bei Paarvergleichen, falls die Condorcet-Kriterien nicht erfüllt sind.
Diese „Kunst der politischen Manipulation“ (mit legalen Mitteln) bezeichnete der Politologe William Harrison Riker als heresthetic bzw. heresthetics. Das klassische Beispiel einer „Manipulation“ einer Abstimmung findet sich bei dem römischen Schriftsteller Plinius der Jüngere in seinen Briefen (8. Buch, 14. Brief).
Forscher
Bekannte und bedeutende Vertreter und Forscher der Sozialwahltheorie sind: Kenneth Arrow, Duncan Black, Sven Berg, Steven Brams, Donald Campbell, Robin Farquharson, Peter Fishburn, Wulf Gaertner, William Gehrlein, Allan Gibbard, Bernard Grofman, Melvin Hinich, Jerry Kelly, Jean-François Laslier, Richard McKelvey, Bernard Monjardet, Hervé Moulin, Richard Niemi, Hannu Nurmi, Peter Ordeshook, Prasanta Pattanaik, Charles Plott, Douglas Rae, William Harrison Riker, Donald Saari, Mark Satterthwaite, Norman Schofield, Amartya Sen.
Siehe auch
- Public Choice
- Spieltheorie
- Theorie der rationalen Entscheidung
- Entscheidungstheorie
- Konsens
- Machtindex
- Condorcet-Jury-Theorem
- Verteilungskonflikt
- Mehrheitsalternative
- Einstimmigkeit
Literatur
- Kenneth J. Arrow: Social Choice and Individual Values. 2. Auflage. Wiley, New York 1963, ISBN 0-300-01363-9.
- Kenneth J. Arrow, Amartya K. Sen, Kotaro Suzumura (Hrsg.): Handbook of Social Choice and Welfare. Elsevier Science/North-Holland, Amsterdam 2002 (Vol. 1), ISBN 0-444-82914-8.
- Konstantin Beck: Die Wahrscheinlichkeit paradoxer Abstimmungsergebnisse. Lang, Bern 1993, ISBN 3-906750-28-0.
- Duncan Black: The Theory of Committees and Elections. Cambridge University Press, London und New York 1958.
- Walter Bossert, Frank Stehling: Theorie kollektiver Entscheidungen. Eine Einführung. Springer, Berlin 1990, ISBN 3-540-53029-0.
- John Craven: Social Choice: A Framework for Collective Decisions and Individual Judgements. Cambridge University Press, Cambridge 1992, ISBN 0-521-31051-2.
- Wulf Gaertner: Domain Conditions in Social Choice Theory. Cambridge University Press, Cambridge 2001, ISBN 0-521-79102-2.
- Wulf Gaertner: A Primer in Social Choice Theory. Oxford University Press, Oxford 2006, ISBN 0-19-929751-7.
- Wulf Gaertner: Sozialwahltheorie. In: Stefan Gosepath, Wilfried Hinsch und Beate Rössler (Hrsg.): Handbuch der Politischen Philosophie und Sozialphilosophie. Bd. 2, Walter Gruyter, Berlin, New York 2008, ISBN 978-3-11-017408-3, S. 1248–1254.
- Jonathan K. Hodge, Richard E. Klima: The Mathematics of Voting and Elections: A Hands-On Approach. American Mathematical Society, Providence, RI 2005, ISBN 0-8218-3798-2.
- Lucian Kern, Julian Nida-Rümelin: Logik kollektiver Entscheidungen. Oldenbourg, München und Wien 1994, ISBN 3-486-21016-5.
- Iain McLean, Arnold B. Urken (Hrsg.): Classics of Social Choice. University of Michigan Press, Ann Arbor 1995, ISBN 0-472-10450-0.
- Hannu Nurmi: Voting Paradoxes and How to Deal with Them. Springer, Berlin 1999, ISBN 3-540-66236-7.
- William H. Riker: Liberalism Against Populism: A Confrontation Between the Theory of Democracy and the Theory of Social Choice. Freeman, San Francisco 1982, ISBN 0-88133-367-0.
- William H. Riker: The Art of Political Manipulation. Yale University Press, New Haven und London 1986, ISBN 0-300-03591-8.
- Donald G. Saari: Basic Geometry of Voting. Springer, Berlin 1995, ISBN 3-540-60064-7.
- Stephan Schulz: Kollektive Entscheidungen in der Aktiengesellschaft. Eine sozialwahltheoretische Analyse ausgewählter Probleme des Aktienrechts. Dt. Univ.-Verl., Wiesbaden 2005, ISBN 3-8350-0064-0.
- Amartya K. Sen: Collective Choice and Social Welfare. Holden-Day, San Francisco 1970, ISBN 0-8162-7765-6.
Weblinks
- Wolfgang Leininger: Die Mehrheit entscheidet. Wirklich? Zur Logik von Kollektiventscheidungen und der Fiktion des demokratischen Wählerwillens
- Ralf Grötker: Kaputte Wahlen. Telepolis 16.09.2005
- Tobias Hürter: Wir rechnen uns einen Superstar. Das Wahlverfahren der Talentshow ist alles andere als gerecht. Andere Methoden ergeben andere Sieger. DIE ZEIT 06.03.2003 Nr.11
- Bibliografie von Jerry S. Kelly
- Janet Maslin: Just Tell Us Whom You Want to Win. In: New York Times, 20 März 2008 - Buchbesprechung: "Gaming the Vote" von William Poundstone
Wikimedia Foundation.