Stereogramme

Stereogramme

Die Stereoskopie (aus dem griechischen: stereo = räumlich – skopein = sehen) ist ein Verfahren zur raumtreuen Abbildung, bei dem

  1. paarweise Bilder, stereoskopische Halbbilder genannt, getrennt für jedes Auge erzeugt und angeboten werden,
  2. auf denen jeder Raumpunkt durch korrespondierende Bildpunkte auf jedem Halbbild abgebildet wird,
  3. die aufgrund der Parallaxe gering seitenverschoben zueinander sind (= stereoskopische Deviation) und durch welche im Gegensatz zu einem zweidimensionalen Bild
    1. die Tiefenlage jedes Raumpunktes aus dem Bild mathematisch reproduzierbar ermittelt werden kann und
    2. der Betrachter die räumliche Lage jedes abgebildeten Raumpunktes aufgrund einer – dem Natürlichen nahekommenden – Darbietung empfinden kann.

Alle anderen Eigenschaften eines zweidimensionalen Bildes, wie perspektivische Verzerrung in Abhängigkeit von einer unnatürlichen Objektivbrennweite, die Farbe und insbesondere aber auch die beschränkende Standortbindung des Betrachters bleiben erhalten. Gerade die beiden letzten Eigenschaften dieses Raumbildverfahrens bedingen den erheblichen Unterschied zur Holografie.

„Raumbild“-Karte von 1949
„Raumbild“-Album von 1949, im Buchdeckel befinden sich Fächer für die Raumbildkarten und die Spezialbrille.

Inhaltsverzeichnis

Grundlagen

Beim Betrachten naher Gegenstände bietet das Sehen mit zwei Augen ein wesentliches Mittel zur richtigen Schätzung der Entfernungen. Mit dem rechten Auge sehen wir einen nahen Gegenstand auf einen anderen Punkt des Hintergrundes projiziert als mit dem linken, und dieser Unterschied wird umso bedeutender, je näher der Gegenstand rückt. Richten wir beide Augen auf einen nicht allzu weit entfernten Punkt, so bilden die beiden Augenachsen einen Winkel (Gesichtswinkel), der umso kleiner wird, je weiter sich der Gegenstand entfernt.

Die Größe dieses Winkels gibt uns daher ein Maß für die Entfernung der Gegenstände. Wir unterscheiden also beim Sehen mit zwei Augen deutlich, welche Punkte mehr vortreten, und welche weiter zurückliegen.

Dazu kommt noch, dass wir nahe Gegenstände mit dem rechten Auge etwas mehr von der einen, mit dem linken Auge etwas mehr von der anderen Seite sehen, und dass gerade die Kombination dieser etwas ungleichen Bilder zu einem Totaleindruck wesentlich dazu beiträgt, die flächenhafte Anschauung des einzelnen Auges zu einer körperlichen, einer plastischen zu erheben.

Eine auf einer Fläche ausgeführte Zeichnung oder ein Gemälde kann immer nur die Anschauung eines einzelnen Auges wiedergeben; bietet man aber jedem Auge das passend gezeichnete Bild eines Gegenstandes dar, so werden sich beide Bilder zu einem einzigen Totaleindruck vereinigen.

Der dreidimensionale Gesamteindruck beim Sehen setzt sich im Wesentlichen aus zwei Informationen zusammen: Der unterschiedliche Blickwinkel beider Augen erzeugt zwei unterschiedliche Bilder und die Linsenkrümmung des Auges passt sich der Entfernung des gesehenen Objektes an, um eine scharfe Abbildung auf der Netzhaut zu erzeugen. Nur beide Eindrücke zusammen lassen einen echten 3D-Eindruck entstehen. Darüber hinaus bewirken Verdeckungs- und Unschärfeeffekte sowie die Perspektive den Raumeindruck. Beim Stereofoto wird den Augen nur die erste Information angeboten. Da das Auge gewohnheitsgemäß versucht, die Linsenkrümmung an die vermeintliche Entfernung anzupassen, kommt eine scharfe Abbildung auf der Netzhaut erst mit einer gewissen Verzögerung (im Millisekundenbereich) zustande. Der Widerspruch zwischen der vermeintlichen Entfernung des gesehenen Objekts und der tatsächlichen Linsenkrümmung bewirkt bei manchen Menschen nach längerer Einwirkung auch Schwindelgefühl oder körperliches Unwohlsein.

Das Resultat eines unwirklichen Bildes kommt zustande, weil das Foto in allen Ebenen scharf angeboten werden muss, um den Raumeindruck zu erzielen, in der Natur wir aber immer nur einen beschränkten Bereich zugleich scharf sehen können (Schärfentiefe des Auges). Um das Auge nicht zu überfordern, wird bei der Aufnahme der überschaubare Bereich absichtlich begrenzt (siehe unten: Lüscher-Winkel).

Mit einer Stereokamera, die zwei Objektive in Augenabstand, als natürliche Basis bezeichnet, aufweist, werden die beiden benötigten Halbbilder gleichzeitig (synchron) aufgenommen. Jedes Einzelbild wird als stereoskopisches Halbbild, das Bildpaar als ein stereoskopisches Bild bezeichnet. Handelt es sich bei dem gewünschten Aufnahmeobjekt aber um unbewegte Motive (Stillleben, Landschaft), können die benötigten Halbbilder auch mit einer einfachen Kamera nacheinander (metachron) aufgenommen werden.

Eine Vergrößerung oder Verkleinerung der Basis bei der Aufnahme vergrößert oder verkleinert bei Betrachtung den räumlichen Eindruck. Aber selbst bei Aufnahme mit natürlicher Basis muss man individuell unterschiedliche Grenzen der maximal verträglichen Deviation berücksichtigen. Es ist Lüschers Verdienst, auf selbige hingewiesen zu haben.

Geschichte

Bereits im 4. Jahrhundert vor Christus befasste sich der griechische Mathematiker Euklid in den Bänden 11–13 seiner Lehrbücher zur Mathematik mit der Stereometrie. Er wusste aber nicht, dass zwei Augen für physiologisch räumlichen Seheindruck nötig sind.

1838 veröffentlichte Sir Charles Wheatstone (1802–1875) seine ersten Forschungsergebnisse über räumliches Sehen. Er berechnete und zeichnete Stereobildpaare und konstruierte für deren Betrachtung einen Apparat, bei dem der Blick des Betrachters durch Spiegel auf die Halbbilder umgelenkt wurde. Diesen Apparat nannte er Stereoskop. Wheatstone erreichte die Vereinigung der zwei Teilbilder durch sein Spiegelstereoskop bestehend aus zwei rechtwinkelig gegeneinander geneigten Spiegeln, deren Ebenen vertikal stehen. Der Beobachter schaute mit dem linken Auge in den linken, mit dem rechten Auge in den rechten Spiegel. Seitlich von den Spiegeln waren zwei verschiebbare Brettchen angebracht, die die umgekehrten perspektivischen Zeichnungen eines Objekts trugen. Durch die Spiegel wurden nun die von entsprechenden Punkten der beiden Zeichnungen ausgehenden Strahlen so reflektiert, dass sie von einem einzigen hinter den Spiegeln gelegenen Punkt zu kommen schienen. Jedes Auge sah also das ihm zugehörige Bild, und der Beobachter erhielt den räumlichen Eindruck.

Nachdem 1839 in der Akademie der Wissenschaften in Paris das Verfahren zur Herstellung fotografischer Bilder auf Silberschichten von Louis Daguerre öffentlich bekannt gegeben wurden, lag es nahe, damit auch stereoskopische Doppelaufnahmen herzustellen, die es bis dahin nur in gezeichneter Form gab.

1849 stellte Sir David Brewster (1781–1868), schottischer Physiker und Privatgelehrter, die erste Zweiobjektiv-Kamera vor, mit der man zum ersten Mal bewegte Schnappschüsse stereoskopisch festhalten konnte. Bis dahin mussten die Stereohalbbilder nacheinander belichtet und die Kamera zwischen den beiden Aufnahmen im Augenabstand verschoben werden, was bei bewegten Motiven zu unterschiedlichen Bildinhalten führen konnte, die keinen räumlichen Eindruck ermöglichten.

Im selben Jahr vereinfachte Brewster das Stereoskop, indem er die Spiegel durch linsenartig gebogene Prismen ersetzte. Für diese Instrumente wurde eine Sammellinse von etwa 18. cm Brennweite in zwei halbkreisförmige Stücke durchgeschnitten; die beiden Hälften wurden mit ihren kreisförmigen Kanten gegeneinander gerichtet in einem Gestell befestigt. In Blickrichtung hinter den Linsen wurde ein Blatt, welches die beiden Zeichnungen (oder fotografischen Bilder) enthielt, eingeschoben. Durch die Linsenstücke wurden einerseits die Bilder dem Auge scheinbar näher gebracht (Lupe); dann aber wirkten sie auch wie Prismen, weil die Linsenhälfte vor dem rechten Auge das Bild scheinbar etwas nach links schiebt, während das Bild der mit dem linken Auge betrachteten Zeichnung etwas nach rechts gerückt erscheint. Auf diese Weise wurde das vollständige Zusammenfallen der beiden Bilder möglich. Diese Stereoskope waren im 19. Jahrhundert allgemein im Gebrauch.

Scharen von Fotografen nahmen von nun an auf ihren Exkursionen durch die ganze Welt auch stereoskopische Fotos auf. Im Britischen Museum in London werden noch heute in verschiedenen Sälen historische Stereo-Aufnahmen von Ausgrabungen und Landschaften gezeigt, die auf einer runden Scheibe angebracht sind. Damit ist diese Betrachtungsart ein Vorläufer der populären View-Master-Geräte aus den 1950er-Jahren.

1851 führte der französische Optiker Jules Dobascq auf der Weltausstellung in London seine Apparate der Öffentlichkeit vor. Es waren Stereoskope nach Konstruktionen von Brewster, mit denen er Stereo-Daguerreotypien zeigte. Die Resonanz des Publikums war überwältigend, und auch Königin Victoria begeisterte sich für diese Präsentation. Damit war der Siegeszug der Stereobilder nicht mehr aufzuhalten. In MItteleuropa wurde das so genannte Kaiserpanorama um 1900 zu einem populären Massenmedium.

Wenn man durch eine zwischen den Bildern befindliche senkrechte Scheidewand dafür sorgt, dass jedes Auge nur das ihm zugehörige, nicht aber das für das andere Auge bestimmte Bild sieht, so ist eine weitere Vorrichtung, um die Bilder zur Deckung zu bringen, gar nicht nötig (Stereoskop von Frick). Mit konkaven Halblinsen muss das für das rechte Auge bestimmte Bild links, das für das linke bestimmte rechts liegen; die Bilder des Brewsterschen Stereoskops würden darin mit verkehrtem Relief erscheinen.

Die weiteste Verbreitung fand das Stereoskop in der 1861 von Oliver Wendell Holmes entwickelten Bauform.

Um 1900 sowie in den 1950er-Jahren erlebte die Stereo-Fotografie einen Boom, aufgrund des höheren technischen Aufwands hat sie sich jedoch nie dauerhaft durchgesetzt. Heute erlebt sie dank der Einführung der Digitalkamera wieder eine leichte Renaissance, weil das teure Fotopapier entfällt und Experimente weniger kostspielig sind.

Aufnahme

Nimslo-Kamera

Bei der Aufnahme eines 3D-Fotos mit einer echten Stereokamera mit zwei Objektiven, kann ganz normal fotografiert werden. Bei der Motivgestaltung sollte auf eine gestaffelte Vorder-/Hintergrundanordnung von Gegenständen geachtet werden. Dieses fördert die räumliche Tiefenwirkung beim späteren Ansehen des Fotos. Landschaftsaufnahmen mit normaler Stereobasis (Augenabstand) wirken auch bei einem 3D-Foto selten räumlich. Bei Landschaftsaufnahmen muss deshalb mit anderen Mitteln eine erweiterte Stereobasis geschaffen werden. Hierbei werden zum Beispiel mit einer Kamera zwei Aufnahmen nacheinander gemacht und zwischen beiden Aufnahmen die Stereobasis auf ca. 50 cm verbreitert. Nachteil dieses Verfahren ist es, dass sich zwischen beiden Aufnahmen etwas bewegen kann. Die Bewegung verhindert eine räumliche gleiche Zuordnung des Objektes im Stereobild. Deshalb empfiehlt es sich, Aufnahmen mit breiterer Stereobasis mit zwei festmontierten Kameras zu machen, die mit geeigneten Mitteln gleichzeitig ausgelöst werden, z. B. mittels Kabelauslöser. Eine für Stereo-Laien einfache Aufnahmetechnik bei Sucherkameras: erstes Objektfoto mit dem Körpergewicht auf dem linken Bein, zweites Objektfoto mit Körpergewicht auf dem rechten Bein. Die Stereobasis beeinflusst die Deviation zwischen den beiden Fotos.

Grundregeln der stereoskopischen Aufnahme

(frei nach [1][2][3])

Das Ziel einer guten Stereo-Aufnahme ist zumeist eine möglichst naturgetreue Wiedergabe des Gesehenen. Die Einhaltung der gleichen Lage der Strahlenbündel bei Aufnahme und Betrachtung ist die Grundbedingung für eine geometrisch naturgetreue (tautomorphe) Wiedergabe. Andernfalls bleibt wegen Überforderung der Stereo-Effekt aus oder es resultiert eine räumliche Verzerrungen des Originals (heteromorphe Raumbilder).

  1. Die Halbbildpaare müssen die gleichen Sehwinkeldifferenzen (Parallaxen) aufweisen, wie beim freien Sehen, weshalb die Aufnahmebasis dem mittleren Augenabstand von 65 mm entsprechen sollte.
  2. Bei der Betrachtung müssen die gleichen Sehwinkel wie bei der Aufnahme erhalten bleiben. Zum einen müssen die Teilbilder in einem Abstand von den Augen betrachtet werden, der der Brennweite der Aufnahme gleicht und in einer Ebene gelegen sein. Andererseits sollte der Abstand der Bildmitten oder korrespondierender ferner Bildpunkte 65 mm betragen.
  3. Die Bildachsen der beiden Halbbilder müssen bei der Betrachtung die gleiche Richtung einnehmen, wie bei der Aufnahme. Diese Forderung bedeutet, dass für die Betrachtung nicht nur, wie schon unter (b) verlangt, die Halbbilder im Abstand der Aufnahmeobjektive montiert sein müssen, sondern auch in den Betrachter, beispielsweise ein Linsenstereoskop, so einzulegen sind, dass die Linsenachsen die Bildmitten treffen. Werden die Linsenmitten gegenüber den Halbbildmitten seitlich verschoben, so erscheint der zukommende räumliche Eindruck seitlich verschoben und verzerrt, umso mehr, je größer die Abweichung von der Normalstellung ist.
  4. In ähnlicher Weise tritt auch eine Verzerrung auf, wenn die Bild- und Linsenmitten sich in der Höhe nicht gleichen. Solange die Höhenverzerrung in mäßigen Grenzen bleibt und vor allen auf beiden Halbbildern gleich groß ist, stört sie kaum. Dagegen wirkt sich eine Höhendifferenz zwischen linkem und rechtem Halbbild von nur wenigen Zehntelmillimeter als sogenannte „Höhenparallaxe“ aus und erschwert das räumliche Verschmelzen. Deshalb muss bei der Montage der Stereo-Bilder vor allem darauf geachtet werden, dass Höhenabweichungen der Teilbilder unter allen Umständen vermieden werden.
  5. Die Lage- oder Betrachtungsdifferenzen (Parallaxen), die nur parallel zur Verbindungslinie der Aufnahmebasis auftreten, müssen auch bei der Betrachtung parallel zur Verbindung der Linsenmitte zu liegen kommen. Mit anderen Worten: Die Teilbilder sind so zueinander anzuordnen, dass ihre seitlichen Begrenzungen zueinander parallel ausgerichtet und nicht in ihrer Ebene gegeneinander verkantet sind. Es entstehen sonst wiederum unliebsame Höhenparallaxen, die den stereoskopischen Effekt störend beeinflussen.
    Stereobild mit geringer Schärfentiefe
  6. Die Bilder müssen über den ganzen Bereich der Bildaufnahme scharf sein, weil das menschliche Auge ab zirka drei Metern Abstand alle Gegenstände gleichzeitig scharf sieht und andererseits auf nähere Entfernungen sich sofort scharf einstellt (akkomodiert). „Künstlerische Unschärfen“ sind daher im Stereobild unangebracht und zu vermeiden. Zur Erzielung einer guten Raumwirkung sollten kurzbrennweitige Objektive, die eine hohe Schärfentiefe aufweisen, zur Anwendung kommen. Hingegen braucht man sich im Gegensatz zum einzelnen Lichtbild um die „richtige Perspektive“ nicht zu kümmern.
    Stereobilder müssen keineswegs von vorne bis hinten scharf sein. Ein Blick durch ein Prismenfernglas zeigt, dass ein scharfes Objekt vor einem unscharfen Hintergrund einen hervorragenden Tiefeneindruck liefert, der durch die Unschärfe sogar verstärkt wird. Bei normalen Fotos kann man mit einem unscharfen Hintergrund ebenfalls eine (schwächere) Tiefenwirkung erreichen. Tatsächlich haben „echte“ Stereokameras eine etwas kürzere Brennweite mit einer großen Schärfentiefe.
  7. Die im stereoskopischen Bild dargestellte Raum (Tiefenzone) soll möglichst so bemessen sein, dass er auf einmal scharf erfasst werden kann. Die Sehwinkeldifferenz zwischen dem nächstem und dem fernstem Punkt darf einen Betrag von 60 bis 70 Winkelminuten – „Lüscher-Winkel“ – nicht überschreiten. Bei Landschaftsaufnahmen darf deshalb der nächstgelegene Punkt erst in drei Metern Entfernung liegen. Bei Makroaufnahmen ist analog auf die Einhaltung der Tiefenzone zu achten.
  8. Die Konvergenz der Sehstrahlen darf bei der Betrachtung der Stereobilder den maximalen Betrag der Konvergenz der Augachsen bei freiem Sehen um ca. 2° nicht übersteigen und sie darf vor allem nicht negativ werden, da Divergenz jegliches Zustandekommen eines Raumeindrucks verhindern kann.

Bei Beachtung der vorstehend aufgeführten Grundregeln wird man immer eine naturgetreue und reine Raumwirkung erzielen. Deshalb braucht man die in der gewöhnlichen Fotografie ängstlich vermiedenen stürzenden Linien, wie sie beispielsweise bei Gebäudeaufnahmen mit geneigter Kamera entstehen, nicht zu fürchten.

Methoden zur Darstellung und Betrachtung

Stereobildpaar

Eine einfache Methode besteht darin zwei stereoskopische Halbbilder nebeneinander abzubilden, mit einer speziellen Blicktechnik (dem Kreuzblick oder Parallelblick – sofern deren Breite jeweils ca. 65 mm nicht übersteigt) können sie dann ohne weitere Hilfsmittel betrachtet werden.

Das linke und rechte Bild ist das Halbbild für das linke Auge, das mittlere Bild ist das Halbbild des rechten Auges. Dadurch kann man das Stereogramm mittels Kreuz- oder Parallelblick anschauen.

Es bedarf keiner besonderen Voraussetzungen, um das hilfsmittellose Betrachten von Stereobildern zu erlernen. Zur Vereinfachung gibt es jedoch spezielle Prismenbrillen. Bei der KMQ-Betrachtungsmethode sind die Halbbilder nicht nebeneinander, sondern übereinander abgebildet.

Für die Archivierung stereoskopischer Bildpaare auf Computern ist es üblich, beide Halbbilder in einer einzelnen JPEG-Datei zu speichern und den Dateityp mit „.jps“ anzugeben. Diese Bildpaare sind für die Betrachtung mit dem „Kreuzblick“ (Schielen) vorgesehen.

Anaglypheverfahren

Bei den Anaglyphenbildern werden die beiden Halbbilder übereinander gedruckt, wobei beide Halbbilder in Komplementärfarben eingefärbt werden. Mit einer entsprechend gefärbten Brille wird für jedes Auge das richtige Halbbild herausgefiltert. Häufig werden die Farben Rot und Blau bzw. Rot und Grün verwendet.

Mittlerweile kommen jedoch vermehrt Rot-Cyan- oder Blau-Gelb-Brillen zum Einsatz. Während Rot-Blau- und Rot-Grün-Filter ein dreidimensionales, aber schwarz/weißes Bild liefern, sind die anderen Brillen in der Lage, farbige Raumbilder sichtbar zu machen!

Anhand des Rot-Cyan-Verfahrens wird hier die Vorgehensweise bei der Erzeugung eines dreidimensionalen Bildes anhand nebenstehenden Schemas erläutert:

  • in der ersten Zeile erkennt man die zwei farbigen Bilder für das linke und rechte Auge (in dieser Darstellung auch mit Parallelblick zu sehen)
  • die zweite Zeile verdeutlicht, dass ausschließlich der Rot-Kanal des linken Bildes, sowie Blau- und Grünkanäle des rechten Bildes für die Berechnung herangezogen werden
  • der fertige, farbige Anaglyph in Zeile drei entsteht durch die Kombination aus Rotkanal des linken und Blau-Grün-Werten des rechten Bildes

Perfekt ist diese Methode nicht. Problematisch sind bei der Betrachtung durch eine Rot-Cyan-Brille vor allen Dingen die zwei linken Kugeln, da sie die Filterfarben Rot und Cyan besitzen, was zu störenden Effekten bei der Betrachtung führt.

Während Rot-Grün- und Rot-Blau-Brillen jeweils nur zwei Farbkanäle der verfügbaren Rot, Grün, Blau-Kanäle verwenden, besteht Cyan aus einer Mischung von Grün und Blau, was zusammen mit dem roten Filter alle drei Farben mit ins Spiel bringt (im Falle der Blau-Gelb-Brillen gilt das Gleiche, da Gelb aus rotem und grünem Licht erzeugt wird).

Linsenraster

Soll das 3D-Bild, aus mehreren Einzelaufnahmen zusammengesetzt, auf normalen Fotopapier räumlich angesehen werden können, muss die Hilfe eines Speziallabors in Anspruch genommen werden. Die Einzelbilder werden in schmalen Streifen auf den Bildträger belichtet und über das Gesamtbild wird eine „Linsenrasterfolie“ aufgetragen, die das Ansehen aus verschiedenen Blickwinkeln ermöglicht. Je mehr Bilder für diese Rasterfolie zur Verfügung stehen, desto weniger „springt“ der Blickwinkel beim Bewegen des Bildes. Für dieses Verfahren wurde u. a. von der Firma Nimslo eine spezielle 3D-Kamera entwickelt, die sogar vier Fotos gleichzeitig auf 35-mm-Film aufnehmen kann.[4] Seit den 1970er-Jahren gibt es Postkartenserien (und vereinzelt auch großformatige Bilder), die dieses Verfahren anwenden.

Diabetrachter

Diabetrachter für 3D-Hochformat-Aufnahmen

Zum Ansehen zweier Diapositive, die zusammen ein 3D-Foto ergeben, von einer einzelnen Person, reichen auch zwei einfache Dia-„Guckis“ aus, in denen das linke und rechte Bild ohne weiteren technischen Aufwand betrachtet werden können.

Zufallspunkt-Raumbilder

Bei seinen Forschungen entdeckte Bela Julesz 1959, dass die Wahrnehmung der räumlichen Tiefe erst im Gehirn stattfindet. Hierzu experimentierte er mit einer speziellen Sorte von Stereobildpaaren, die nur zufällig verteilte Punkte enthielten. Die Raumwirkung entsteht nur durch die Querdisparation. Auf dem folgenden Bild ist ein Kreis zu erkennen.

Das Prinzip, das hinter den Zufallpunkt-Raumbildern steht, ist, dass ein Zufallspunkt-Bild erzeugt wird. Die räumlichen Unterschiede werden als Differenz in dem zweiten Bild erzeugt. Aus dem Unterschied eines Punktes auf dem ersten Bild und seiner veränderten Lage auf dem Zweiten Bild ergibt sich der Höhenunterschied. Das funktioniert deswegen so gut, weil das Gehirn versucht, die beiden Bilder zur Deckung zu bekommen. Noch völlig ungeklärt ist, wie das Gehirn jeweils zwei Punkte auf der linken und rechten Retina als „zusammengehörig“ erkennt, das sogenannte „Korrespondenzproblem“.

SIRDS

Die nächste Entwicklung folgte mit dem Single Image Random Dot Stereogram (SIRDS), das ein einzelnes großes Bild ist. Entwickelt wurde diese Art der Stereogramme von Christoper Tyler und Maureen Clarke gegen 1979.

SIRDS mit dem Schriftzug „3D“

Die Vorgehensweise bei der Erstellung des SIRDS ist ähnlich wie bei der Erstellung des Zufallspunkt-Bildpaares. Der Unterschied liegt darin, dass kein ganzes Zufallspunkt-Bild erzeugt wird, sondern erstmal ein Streifen. Von diesem Streifen wird ein Differenzstreifen berechnet, der direkt an den Urstreifen angehängt wird; zu dem Differenzstreifen wird ein weiterer Differenzstreifen berechnet, und so weiter, bis das ganze Bild komplett ist. Dabei ist es vorteilhaft, den Urstreifen in die Mitte zu legen, und links und rechts davon die Differenzstreifen zu legen. Das lässt sich besonders bei dem weiter unten abgebildeten SIS verstehen.

Um den korrekten räumlichen Eindruck zu erhalten, muss der Blick des Betrachter auf das Bild ins Unendliche gerichtet werden. Schielen ergibt einen invertierten 3-D Eindruck: eigentlich im Vordergrund befindliche Bildelemente erscheinen im Hintergrund und umgekehrt. Nach einiger Eingewöhnungszeit werden dann die eingebetteten Konturen sichtbar.

Das Computerspiel Magic Carpet verwendete auf Wunsch das SIRDS-Verfahren, um das Spielgeschehen in Echtzeit räumlich darzustellen. Bei dieser Darstellung handelt es sich aufgrund der Interaktivität des Spiels um einen Sonderfall des animierten Stereogramms.

SIS

Gegen Mitte der 1980er-Jahren wurde begonnen, die Zufallsmuster durch richtige Bilder zu ersetzen. Das single image stereogram (SIS) erlebte dann in den 1990er-Jahren einen großen Boom, nachdem Tom Baccei die Buchserie Das Magische Auge (engl. magic eye) herausbrachte.

Anwendungsgebiete

Neben der Unterhaltung wird die Stereoskopie auch zur Veranschaulichung der Stereometrie und Trigonometrie, in mathematischen Lehrbüchern und zum Studium der Gesetze des binokularen Sehens eingesetzt.

Dove demonstrierte mit Hilfe des Stereoskops die Entstehung des Glanzes. Ist die Fläche einer Zeichnung blau und die entsprechende der anderen gelb angestrichen, so sieht man sie, wenn man sie im Stereoskop durch ein violettes Glas betrachtet, metallisch glänzend. Weiß und Schwarz führen zu einem noch lebhafteren Bild. Auch zur Unterscheidung echter Wertpapiere von unechten hat Dove das Stereoskop benutzt. Betrachtet man die zu vergleichenden Papiere mit dem Instrument, so werden sofort die kleinsten Unterschiede bemerkbar. Die einzelnen Zeichen, die nicht genau mit dem Original übereinstimmen, decken sich nicht und befinden sich anscheinend in verschiedenen Ebenen.

Die horizontale Deviation der korrespondierenden Bildpunkte auf den paarweisen stereoskopischen Halbbildern kann man auch technisch auswerten, um die Tiefe zu bestimmen. Hierbei spielen physiologische Überforderungen keine Rolle und man nutzt den Effekt in der Astronomie, wobei keine paarweise Montage der Bilder nötig ist. Wünscht man hingegen eine bequeme und natürliche Betrachtung, vielleicht sogar ohne größere technische Hilfsmittel, so ist die paarweise Montage der stereoskopischen Halbbilder zu 3D-Fotos zweckmäßig und üblich.

In der Fahrzeug- und Robotertechnik dienen Stereovideosensoren zur Entfernungs- und Abstandmessung.[5]

Für die Kartierung von Geländeformationen und zur Erstellung von 3D-Stadtmodellen kann die stereoskopische Luftbildauswertung herangezogen werden.

Computerspiele arbeiten heute meist mit dreidimensionalen Modellen, die sich bei geeigneter Softwareunterstützung nicht nur auf einem herkömmlichen Monitor, sondern auch auf spezieller, Tiefenwirkung erzeugender Hardware darstellen lassen. Eine Standardisierung solcher Systeme steht gegenwärtig (2009) noch aus.

Literatur

Theorie

  • David Brewster: The stereoscope: it's history, theory and construction . London 1856
  • Ruete, Christian Georg Theodor: Das Stereoskop: Eine populäre Darstellung. 2. Auflage. Teubner, Leipzig 1867
  • Thomas Abé: Grundkurs 3D-Bilder. VfV-Verlag, Gilching, ISBN 3-88955-099-1
  • Alexander Klein, Franz Weiland, Rainer Bode: 3D - aber wie! Von magischen Bildern zur 3D-Fotografie. Bode Verlag Haltern 1994, ISBN 3-925094-64-4
  • Jean Pütz: Das Hobbythek-Buch 3, vgs Verlagsgesellschaft, Köln 1979, ISBN 3-8025-6102-3
  • Fritz Waack, G. Kemner: Einführung in Technik und Handhabung der 3-D-Fotografie. Museum für Verkehr und Technik, Berlin 1989
  • Leo. H. Bräutigam: Stereofotografie mit der Kleinbildkamera: Eine praxisorientierte Einführung. Wittig Fachbuchverlag, 1996, ISBN 3-93-035931-6

Bildbände

  • Achim Bahr: Stereoskopie. Räume, Bilder, Raumbilder. Thales Verlag, 1991, ISBN 3-88908-549-0
  • Tom Baccei, Cheri Smith: Das magische Auge. Ars Edition, ISBN 3-7607-2264-4
  • Marc Grossman: The Magic Eye, Volume I von N. E. Thing Enterprises. Andrews & Mcmeel, ISBN 0-8362-7006-1
  • Arthur G. Haisch: Hotel Morbid/Morbid Rooms, Stereo-Raumbilder. 3-D-World Verlag, Basel 1983, ISBN 3-905450-02-X
  • Matthias Henrici, Christian Neubauer: Phantastische Augenblicke I Lingen Verlag
  • Hartmut Wettmann: Das Rheinland in historischen Stereofotos, Dr. Gebhardt + Hilden GmbH, 1999, ISBN 3-932515-15-3
  • Ulli Siebenborn: Interactive Pictures, Volume I. Taschen Verlag, 1994, ISBN 3-8228-9211-4
  • Roland Bartl, Klaus Bartl, Andreas Ernstberger, Peter Schwartzkopff: Pep Art. 3-D-Bilder der neuen Art. Südwest Verlag, München, 1994, ISBN 3-517-01632-2

Unkategorisiert

  • Steinhauser: Über die geometrische Konstruktion der Stereoskopbilder. Graz 1870
  • Yuki Inoue, Masahira Oga (Herausgeber): Stereogramm. ISBN 3-7607-1106-5
  • Andrew A. Kinsman: Random Dot Stereograms. ISBN 0-9630142-1-8
  • Rolf Sander, Martin Simeth: Der kleine Hobbit und das Autostereogramm In: Spektrum der Wissenschaft, Nr. 1, 1995, Seiten 10–15

Weblinks

Einzelnachweise

  1. Hermann Lüscher: Die Wahl der günstigsten Basis bei Stereo-Fern- und Nahaufnahmen. Der Stereoskopiker, Nr. 7, 1930
  2. Werner Pietsch: Die Praxis der Stereo-Nahaufnahme. VEB Fotokinoverlag, 1957
  3. Werner Pietsch: Stereofotografie. VEB Fotokinoverlag, 1959
  4. 3D-Kamera von Nimslo (Link auf Englisch)
  5. Stereobasierte Videosensorik zur Hinderniserkennung (PDF)

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • stéréogramme — [ stereɔgram ] n. m. • 1894; de stéréo et gramme ♦ Techn. Épreuve photographique double, destinée à la vision stéréoscopique. ● stéréogramme nom masculin Couple stéréoscopique prêt à l observation. Représentation graphique de faits se rapportant… …   Encyclopédie Universelle

  • Stereogramme — Autostéréogramme Autostéréogramme animé : image d un requin nageant, à voir en vision parallèle …   Wikipédia en Français

  • Stéréogramme — Autostéréogramme Autostéréogramme animé : image d un requin nageant, à voir en vision parallèle …   Wikipédia en Français

  • stereogramme — stereopora statusas T sritis Standartizacija ir metrologija apibrėžtis Vieno daikto du plokšti atvaizdai arba nuotraukos, nufotografuotos iš dviejų skirtingų matymo taškų stereoefektui ar erdviniam daiktų atvaizdui gauti. atitikmenys: angl.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • stéréogramme — stereograma statusas T sritis Standartizacija ir metrologija apibrėžtis Stereografu padarytas brėžinys. atitikmenys: angl. stereogram vok. Raumbild, n; Stereobild, n; Stereogramm, n rus. стереограмма, f pranc. stéréogramme, m …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • stéréogramme — stereograma statusas T sritis fizika atitikmenys: angl. stereogram; stereograph vok. Raumbild, n; Stereobild, n; Stereogramm, n rus. стереограмма, f pranc. stéréogramme, m …   Fizikos terminų žodynas

  • stéréogramme — stereograma statusas T sritis Gynyba apibrėžtis Erdvinei apžiūrai teisingai sudėtų erdvinių nuotraukų ar brėžinių komplektas. atitikmenys: angl. stereogram pranc. stéréogramme …   NATO terminų aiškinamasis žodynas

  • stéréogramme — ● n. m. ►GRAPH Voir autostéréogramme …   Dictionnaire d'informatique francophone

  • Auto-stéréogramme — Auto stéréoscopie L auto stéréoscopie se distingue de la stéréoscopie classique par le fait que l image peut être observée en relief sans imposer le port de lunettes spéciales. On a pu dire que l écran porte les lunettes et l observateur n en a… …   Wikipédia en Français

  • Autostéréogramme — animé : image d un requin nageant, à voir en vision parallèle …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”