Totale Korrektheit

Totale Korrektheit

Unter Korrektheit versteht man in der Informatik die Eigenschaft eines Computerprogramms, einer Spezifikation zu genügen (siehe auch Verifikation). Spezialgebiete der Informatik, die sich mit dieser Eigenschaft befassen, sind die Formale Semantik und die Berechenbarkeitstheorie.

Nicht abgedeckt vom Begriff Korrektheit ist, ob die Spezifikation die vom Programm zu lösende Aufgabe korrekt beschreibt (siehe dazu Validierung).

Ein Programmcode wird bezüglich einer Vorbedingung P und der Nachbedingung Q partiell korrekt genannt, wenn bei einer Eingabe, die die Vorbedingung P erfüllt, jedes Ergebnis die Nachbedingung Q erfüllt. Dabei ist es noch möglich, dass das Programm nicht für jede Eingabe ein Ergebnis liefert, also nicht terminiert.

Ein Code wird total korrekt genannt, wenn er partiell korrekt ist und zusätzlich für jede Eingabe, die die Vorbedingung P erfüllt, terminiert. Aus der Definition folgt sofort, dass total korrekte Programme auch immer partiell korrekt sind.

Der Nachweis partieller Korrektheit (Verifikation) kann z. B. mit dem wp-Kalkül erfolgen. Um zu zeigen, dass ein Programm total korrekt ist, muss hier der Beweis der Terminierung in einem gesonderten Schritt behandelt werden. Mit dem Hoare-Kalkül kann die totale Korrektheit in vielen Fällen nachgewiesen werden.

Der Nachweis der Korrektheit eines Programms kann jedoch nicht in allen Fällen geführt werden: das folgt aus dem Halteproblem bzw. aus dem Gödelschen Unvollständigkeitssatz. Auch wenn die Korrektheit für Programme, die bestimmten Einschränkungen unterliegen, bewiesen werden kann, so zählt die Korrektheit von Programmen allgemein zu den nicht-berechenbaren Problemen.

Die Durchführung einer Überprüfung auf Korrektheit bezeichnet man als Beweis. Dabei ist ein Beweis der totalen Korrektheit ein Spezialfall eines mathematischen Beweises, erlaubt also im Gegensatz zum umgangssprachlichen Beweisbegriff eine absolute Aussage.

Siehe auch

Weblinks


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Korrektheit (Informatik) — Unter Korrektheit versteht man in der Informatik die Eigenschaft eines Computerprogramms, einer Spezifikation zu genügen (siehe auch Verifikation). Spezialgebiete der Informatik, die sich mit dieser Eigenschaft befassen, sind die Formale Semantik …   Deutsch Wikipedia

  • Partielle Korrektheit — Unter Korrektheit versteht man in der Informatik die Eigenschaft eines Computerprogramms, einer Spezifikation zu genügen (siehe auch Verifikation). Spezialgebiete der Informatik, die sich mit dieser Eigenschaft befassen, sind die Formale Semantik …   Deutsch Wikipedia

  • Hoare-Logik — Der Hoare Kalkül (auch Hoare Logik) ist ein Formales System, entwickelt von dem britischen Informatiker C. A. R. Hoare und später verfeinert von Hoare und anderen Wissenschaftlern. Er wurde 1969 in einem Artikel mit dem Titel An axiomatic basis… …   Deutsch Wikipedia

  • Hoare-Tripel — Der Hoare Kalkül (auch Hoare Logik) ist ein Formales System, entwickelt von dem britischen Informatiker C. A. R. Hoare und später verfeinert von Hoare und anderen Wissenschaftlern. Er wurde 1969 in einem Artikel mit dem Titel An axiomatic basis… …   Deutsch Wikipedia

  • Hoarekalkül — Der Hoare Kalkül (auch Hoare Logik) ist ein Formales System, entwickelt von dem britischen Informatiker C. A. R. Hoare und später verfeinert von Hoare und anderen Wissenschaftlern. Er wurde 1969 in einem Artikel mit dem Titel An axiomatic basis… …   Deutsch Wikipedia

  • Hoare-Kalkül — Der Hoare Kalkül (auch Hoare Logik) ist ein Formales System, entwickelt von dem britischen Informatiker C. A. R. Hoare und später verfeinert von Hoare und anderen Wissenschaftlern. Er wurde 1969 in einem Artikel mit dem Titel An axiomatic basis… …   Deutsch Wikipedia

  • Merge-Sort — Mergesort ist ein rekursiver, stabiler Sortieralgorithmus, der ähnlich wie Quicksort nach dem Prinzip Teile und herrsche (lat. Divide et impera, engl. Divide and Conquer) arbeitet. Er wurde erstmals 1945 durch John von Neumann vorgestellt. Der… …   Deutsch Wikipedia

  • MergeSort — ist ein rekursiver, stabiler Sortieralgorithmus, der ähnlich wie Quicksort nach dem Prinzip Teile und herrsche (lat. Divide et impera, engl. Divide and Conquer) arbeitet. Er wurde erstmals 1945 durch John von Neumann vorgestellt. Der zusätzliche… …   Deutsch Wikipedia

  • Merge Sort — Mergesort ist ein rekursiver, stabiler Sortieralgorithmus, der ähnlich wie Quicksort nach dem Prinzip Teile und herrsche (lat. Divide et impera, engl. Divide and Conquer) arbeitet. Er wurde erstmals 1945 durch John von Neumann vorgestellt. Der… …   Deutsch Wikipedia

  • Natural Mergesort — Mergesort ist ein rekursiver, stabiler Sortieralgorithmus, der ähnlich wie Quicksort nach dem Prinzip Teile und herrsche (lat. Divide et impera, engl. Divide and Conquer) arbeitet. Er wurde erstmals 1945 durch John von Neumann vorgestellt. Der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”