U+2240

U+2240
X

Das Kranzprodukt (engl. wreath product) ist ein Begriff aus der Gruppentheorie und bezeichnet ein spezielles semidirektes Produkt von Gruppen.

Inhaltsverzeichnis

Definition

Sind G und J Gruppen und operiert J auf einer Menge Y, so wird dadurch eine Operation von J auf GY (der Gruppe aller Abbildungen von Y nach G mit punktweise Verknüpfung) induziert durch:

\forall j\in J, f\in G^Y: (^jf)(y)=f(^{j^{-1}}y)

Jedes j\in J definiert auf diese Weise einen Automorphismus von GY.

Somit kann das Kranzprodukt G \wr_Y J als das semidirekte Produkt aus GY und J bezüglich ebendieser Operation definiert werden.

Eigenschaften

Aus der Definition lässt sich sofort die Kardinalität von Kranzprodukten ableiten: \left|G \wr_Y J\right|=\left|G\right|^{\left|Y\right|}\cdot\left|J\right|

Da jede Gruppe auf sich selbst durch Linksmultiplikation operiert, ist es auch oft so, dass nur das entsprechende Kranzprodukt G \wr_J J definiert wird. Ebenso üblich ist es, Y als endliche Menge {1,...,n} festzusetzen und für J nur Untergruppen von Sym(n) mit der kanonischen Operation auf Y zuzulassen.

Operationen

Operiert G auf einer Menge X, so wird dadurch und durch die Operation von J auf Y eine Operation von G \wr_Y J auf X\times Y induziert:

\forall (x,y)\in X\times Y, (f,j)\in G \wr_Y J: ^{(f,j)}(x,y):=(^{f(^jy)}x,^jy)

Diese Operation ist genau dann treu/transitiv wenn die Operationen von G auf X und J auf Y treu/transitiv sind.

Gruppenerweiterungen

Ist H eine Erweiterung von N durch Q, so lässt sich H als eine Untergruppe eines Kranzprodukts aus N und Q darstellen. Dies ist vielleicht eine der wichtigsten Eigenschaften von Kranzprodukten, da jede endliche Gruppe durch Erweiterungen einfacher endlicher Gruppen darstellbar ist.

Gegeben ist also eine exakte Sequenz

1\longrightarrow N \longrightarrow^{\!\!\!\!\!\!\!\!\!\iota}\ \, H \longrightarrow^{\!\!\!\!\!\!\!\!\!\pi}\ \, Q \longrightarrow 1

Außerdem sei eine Abbildung q:H\to H gegeben, die \forall g\in H:q(g)\iota(N)=g\iota(N) erfüllt und jedem Element einen festen Repräsentanten seiner jeweiligen Nebenklasse zuordnet. Weiterhin muss gelten \forall g\in H:q(g^{-1})=q(g)^{-1}. (Ist N unendlich, so ist eine solchen Funktion möglicherweise nur mit dem Auswahlaxiom zu finden)

Die Einbettung \phi:H\hookrightarrow N\wr_Q Q (Q operiert auf sich selbst durch Linksmultiplikation) ist dann gegeben durch:

\phi(h):=(\sigma_h,\pi(h))\,

Hierbei ist \sigma_h:Q\to N wie folgt definiert:

\sigma_h(yN):=\iota^{-1}(q(y^{-1})\cdot h\cdot q(h^{-1}y))

Diese Einbettung geht zurück auf L.Kaloujnine und M.Krasner[1].

Beispiele

Die p-Sylowgruppen der Symmetrischen Gruppe Sn lassen sich als iterierte Kranzprodukte zyklischer Gruppen darstellen.

Dazu definiert man rekursiv eine Folge von Gruppen durch Wp,0: = {1} und W_{p,n+1}:=W_{p,n} \wr_{\mathbb{Z}_p} \mathbb{Z}_p wobei die Operation von J=\mathbb{Z}_p auf Y=\mathbb{Z}_p durch Linksmultiplikation gegeben ist.

Stellt man n zur Basis p dar, d. h. als Summe \sum_{i=0}^{k}{c_ip^i} mit c_i\in\{0,...,p-1\}, so sind die p-Sylowgruppen von Sn dann isomorph zu \prod_{i=0}^{k}{W_{p,i}^{c_i}}

Zum Symbol

Die senkrechte Tilde, die für das Kranzprodukt verwendet wird, befindet sich im Unicode-Block Mathematische Operatoren auf Positition U+2240[2], in TeX und LaTeX kann es mit \wreath bzw. \wr dargestellt werden.

Quellen

  1. "Produit complet des groupes de permutations et probleme d’extension de groupes", L. Kaloujnine, M. Krasner - I, Acta Sci. Math. Szeged, 1950
  2. Unicode Character 'WREATH PRODUCT' (U+2240), fileformat.info

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • 2240 Tsai — Infobox Planet minorplanet = yes width = 25em bgcolour = #FFFFC0 apsis = name = Tsai symbol = caption = discovery = yes discovery ref = discoverer = discovery site = discovered = , designations = yes mp name = 2240 alt names = 1978 YA mp category …   Wikipedia

  • 2240 BC — Events= Estimation: Akkad, capital of the Akkadian Empire becomes the largest city of the world, taking the lead from Memphis, capital of Egypt. [http://geography.about.com/library/weekly/aa011201a.htm] …   Wikipedia

  • 2240 v. Chr. — Portal Geschichte | Portal Biografien | Aktuelle Ereignisse | Jahreskalender ◄ | 4. Jt. v. Chr. | 3. Jahrtausend v. Chr. | 2. Jt. v. Chr. | ► ◄ | 25. Jh. v. Chr. | 24. Jh. v. Chr. | 23. Jahrhundert v. Chr. | 22. Jh. v. Chr. | 21. Jh. v. Chr …   Deutsch Wikipedia

  • 2240 — матем. • Запись римскими цифрами: MMCCXL …   Словарь обозначений

  • NGC 2240 — Планетарная туманность …   Википедия

  • Série 2240 — UTE 2240 (CP) La 2243 à Coïmbra B Identification …   Wikipédia en Français

  • CP Serie 2240 — Saltar a navegación, búsqueda Serie 2240 de CP La 2243 en Coïmbra B. el 7 de agosto de 2003 Tipo de tren Unidad eléctrica Fabricante Talleres EMEF, Entroncamento …   Wikipedia Español

  • Serie 2240 — Série 2240 Série 2240 Type de locomotive Automotrice électrique Constructeur Groupement d Électrification 50Hz Modernisation: Alstom dans EMEF GOE Date de construction 1970 (2100), 1977 (2150) et 1984 (2200) Modernisation:… …   Wikipédia en Français

  • Annees -2240 — Années 2240 XXVe siècle av. J. C. | XXIVe siècle av. J. C. | XXIIIe siècle av. J. C. ../.. | Années 2250 | Années 2240 | Années 2230 | Années 2220 | Années 2210 | ../ …   Wikipédia en Français

  • Calendario perpetuo de 2240 a 2249 — Año 2240 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 >Todos …   Enciclopedia Universal

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”