- Webster-Verfahren
-
Das Sainte-Laguë-Verfahren (im angelsächsischen Raum Webster-Verfahren; andere Bezeichnungen: Sainte-Laguë/Schepers-Verfahren, Divisorverfahren mit Standardrundung, Methode der hälftigen Bruchteile, Methode der ungeraden Zahlen) ist eine Methode der proportionalen Repräsentation (Sitzzuteilungsverfahren), wie sie z. B. bei Wahlen mit dem Verteilungsprinzip Proporz (siehe Verhältniswahl) benötigt wird, um Wählerstimmen in Abgeordnetenmandate umzurechnen.
Inhaltsverzeichnis
Geschichte
Im Jahr 1832 propagierte der US-amerikanische Politiker Daniel Webster das Verfahren im Rahmen einer Untersuchung der Zuteilung der Mandatsansprüche der US-Bundesstaaten im US-Repräsentantenhaus, konnte sich jedoch nicht durchsetzen – bis es schließlich von 1880 bis 1940 doch hierfür verwendet wurde. Der französische Mathematiker André Sainte-Laguë (sprich: Lagüh, mit dem Ton auf der letzten Silbe[1]) war der Erste, der zu Beginn des 20. Jahrhunderts das Verfahren mit der optimalen Erfüllung der Erfolgswertgleichheit der Wählerstimmen rechtfertigte.
Seit der 9. Legislaturperiode (Beginn 1980) wird das Verfahren in Deutschland auf Vorschlag des Physikers und Bundestagsverwaltungsmitarbeiters Hans Schepers für die Verteilung der Ausschusssitze des Deutschen Bundestages eingesetzt. Nach dem Aufflammen von Fachdiskussionen Ende der neunziger Jahre setzt sich der Einsatz des Verfahrens auch bei Wahlen der Legislative mehr und mehr durch: Verwendet wurde es zwar bisher nur in Bremen (seit 2003) und Hamburg (2008), der Einsatz zur Berechnung der Mandatsverteilung ab der Bundestagswahl 2009 sowie der Landtagswahl in Nordrhein-Westfalen (voraussichtlich ab 2010) und Baden-Württemberg (voraussichtlich ab 2011) sind bereits gesetzlich fixiert. Fachleute rechnen mit der Aufnahme des Verfahrens in weitere Wahlgesetze des Bundes und der Länder.
Berechnungsweise
Das Sainte-Laguë-Verfahren ist von seiner Systematik her unter anderem mit dem Verfahren nach D’Hondt vergleichbar. Allerdings werden die Stimmenzahlen bei Verwendung des Höchstzahlverfahrens nicht durch die Zahlen 1; 2; 3 usw., sondern durch 1; 3; 5 usw. (alternativ durch 0,5; 1,5; 2,5 usw.) geteilt, und die Sitze in der Reihenfolge der größten sich ergebenen Höchstzahlen zugeteilt. Hierdurch treten die Verteilungsverzerrungen zu Gunsten großer Parteien nicht auf, wie es beim D’Hondt-Verfahren der Fall ist. Die Sitzzuteilung nach Sainte-Laguë verhält sich neutral zur Stärke der Parteien.
Die folgenden Vorgehensweisen führen bei jedem Wahlergebnis zur selben Sitzzuteilung wie das Sainte-Laguë-Verfahren:
- Die Stimmen der Parteien werden durch einen geeigneten Divisor (Stimmen pro Sitz) dividiert und nach Standardrundung gerundet. Werden im Ergebnis zu viele Sitze verteilt, muss die Berechnung mit einem größeren Divisor wiederholt werden, im umgekehrten Fall mit einem kleineren Divisor.
- Bei der Bestimmung der Ausschussbesetzung im Bundestag wird das Sainte-Laguë-Verfahren nicht als Höchstzahl-, sondern als Rangmaßzahlverfahren verwendet. Durch Berechnung des Kehrwerts der jeweiligen Höchstzahlen und anschließender Multiplikation mit der Gesamtstimmenzahl erhält man Rangmaßzahlen. Die Sitze werden in der Reihenfolge der kleinsten Rangmaßzahlen zugeteilt.
Aufgrund der Konsistenz des Verfahrens – die jedoch bei allen Divisorverfahren gegeben ist – sind die beim Hare-Niemeyer-Verfahren möglichen Sprünge laut Alabama-Paradoxon und das allen Quotenverfahren immanente Wählerzuwachsparadoxon ausgeschlossen.
Berechnungsbeispiel nach dem Höchstzahlverfahren
In einem Parlament sind insgesamt 15 Sitze zu vergeben.
10.000 Wählerstimmen sind abgegeben worden, von denen 5.200 auf Partei X, 1.700 auf Partei Y und 3.100 auf Partei Z entfallen.
Daraus ergibt sich folgendes Bild:Divisor Partei X Partei Y Partei Z 0,5 1 10.400,00 4 3.400,00 2 6.200,00 1,5 3 3.466,67 10 1.133,33 6 2.066,67 2,5 5 2.080,00 680,00 8 1.240,00 3,5 7 1.485,71 485,71 12 885,71 4,5 9 1.155,56 377,78 15 688,89 5,5 11 945,45 309,09 563,64 6,5 13 800,00 261,54 476,92 7,5 14 693,33 226,67 413,33 8,5 611,76 200,00 364,71 Partei X erhält die Sitze 1, 3, 5, 7, 9, 11, 13 und 14. Insgesamt also 8 der 15 Sitze.
Partei Y erhält die Sitze 4 und 10. Insgesamt also 2 der 15 Sitze.
Partei Z erhält die Sitze 2, 6, 8, 12 und 15. Insgesamt also 5 der 15 Sitze.Belege
- ↑ http://fr.wikipedia.org/wiki/Discuter:André_Sainte-Laguë Ein Ur-Ur-Enkel von André Sainte-Laguë namens Margaux sagt dort, der Name spreche sich wie der Anfang des französischen Wortes „lagune“.
Siehe auch
Weblinks
- Wahlrecht.de – Sainte-Laguë-Verfahren
- Wahlrecht.de – Sainte-Laguë-Rangmaßzahlverfahren
- ACE Project: Reapportionment and Redistricting in the USA – Webster-Verfahren in den USA (Englisch)
- André Sainte-Laguë, in Französisch
Wikimedia Foundation.