Blochscher Satz

Blochscher Satz

Die Bloch-Funktion oder Bloch-Welle (nach Felix Bloch) ist die allgemeinste Lösung der stationären Schrödingergleichung für ein x0-periodisches Potential (z. B. die Wellenfunktion eines Elektrons in einem kristallinen Festkörper). Die Form dieser Wellenfunktionen wird durch das Bloch-Theorem festgelegt:

Definition: Es sei ein periodisches Potential V(x) mit der Periodizität x0 gegeben, V(x + x0) = V(x). Dann haben die Lösungen der stationären Schrödinger-Gleichung notwendigerweise die Form
\psi(x)=e^{ikx}\cdot u_k(x)

wobei uk(x) eine periodische Funktion mit Periode x0 ist (uk(x) = uk(x + x0)).

Die Periodizität des Potentials V(x)=V(x+x0) überträgt sich also auf uk(x) und damit auf die Aufenthaltswahrscheinlichkeit |ψ|2 des betrachteten Teilchens im Potential. Betrachtet man einen kristallinen Festkörper, so ist die Periodizität x0 durch das Kristallgitter, also einen Gittervektor gegeben.


Kurze Herleitung

Das Potential V(\vec{r}) ist invariant gegenüber einer Translation um einen Vektor \vec R (in einem Kristall ist \vec{R} ein Gittervektor):

V(\vec{r}) = V(\vec{r}+\vec{R})


Dieselbe Translationsinvarianz gilt damit auch für den Hamiltonoperator \hat H=\frac{\hat P^2}{2m}+V(\vec r) des Teilchens. Daher unterscheiden sich zwei Wellenfunktionen, die um einen Vektor R gegeneinander verschoben sind, höchstens um einen ortsunabhängigen Faktor f:

\psi(\vec{r}+\vec{R}) = f(\vec{R}) \psi(\vec{r}).


Bloch zeigte, dass der Faktor f gegeben sein muss durch

f(\vec{R}) = e^{i\vec{k}\cdot\vec{R}}.


Diese Bedingungen werden aber gerade durch die Bloch-Funktion erfüllt.


Literatur

  • Hartmut Haug, Stephan Koch: Quantum Theory of the Optical and Electronic Properties of Semiconductors, Fourth Edition, Singapore – River Edge – London: World Scientific, Seite 29ff.
  • Cohen-Tannoudji, Claude / Diu, Bernard / Laloë, Franck (1999): Quantenmechanik 1&2, 2. Auflage, Berlin – New York: Walter de Gruyter.
  • Kittel, Charles (2006): Einführung in die Festkörperphysik, 14. Auflage, München: Oldenbourg-Verlag, Seite 194
  • Ibach, Harald / Lüth, Hans (1991): Festkörperphysik, 3.Auflage, Berlin – Heidelberg: Springer-Verlag, Seite 106fff

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”