Case-Based-Reasoning

Case-Based-Reasoning

Das fallbasierte Schließen (engl. case-based reasoning, franz. raisonnement par cas, span. Razonamiento basado en casos) ist ein maschinelles Lernverfahren zur Problemlösung durch Analogieschluss. Das zentrale Element in einem CBR-System ist eine so genannte Fallbasis (Falldatenbank, case memory), in der bereits gelöste Probleme als Fall gespeichert sind. Ein solcher Fall besteht mindestens aus einer Problembeschreibung und einer zugehörigen Problemlösung. Das Ziel ist, zur Lösung eines gegebenen Problems die Lösung eines ähnlichen und früher bereits gelösten Problems heranzuziehen. Damit ahmt man eine menschliche Verhaltensweise nach: Vor ein neues Problem gestellt, erinnert sich der Mensch oft an eine vergleichbare Situation, die er in der Vergangenheit erlebt hat, und versucht, die aktuelle Aufgabe ähnlich zu meistern.

Gelegentlich spricht man auch von erinnerungsbasiertem Schließen.

Inhaltsverzeichnis

Vorgehensweise

Illustration des CBR-Zyklus

Das wohl bekannteste Modell geht auf die Wissenschaftler Agnar Aamodt und Enric Plaza zurück, die das Grundprinzip des Case-Based Reasoning als einen Prozess mit vier Phasen, den so genannten CBR-Zyklus, beschrieben haben (Quelle: siehe unten).

  1. Retrieve. Ausgehend von einer gegebenen Problembeschreibung gilt es, in der Fallbasis ein möglichst ähnliches Problem zu ermitteln. Die Herausforderung in dieser Phase besteht darin, die Ähnlichkeit der Problembeschreibungen zu bestimmen.
  2. Reuse. Die Lösung des Falls, der dem vorgegebenen am ähnlichsten ist, wird als ein erster Lösungsvorschlag übernommen. Damit hat man einen Ausgangspunkt für die Lösung des neuen Problems.
  3. Revise. Nicht immer kann man das aktuelle Problem genau so lösen wie das frühere. In der Revise-Phase überprüft man die zuvor gewonnene Ausgangslösung und passt sie gegebenenfalls an die konkreten Bedingungen an.
  4. Retain. Der überarbeitete Fall wird schließlich in der Fallbasis abgespeichert und steht damit für zukünftige Anfragen zur Verfügung. Auf diese Weise lernt das System mit jedem weiteren gelösten Problem hinzu und verbessert so seine Leistungsfähigkeit.

Anwendung

Case-Based Reasoning hat sich besonders in Anwendungssystemen für den Kundendienst, so genannten Help-Desk-Systemen, bewährt, wo man es z. B. zur Diagnose und Therapie von Kundenproblemen nutzt. In jüngerer Zeit setzt man es verstärkt in (Produkt-)Beratungssystemen ein, beispielsweise im E-Commerce, sowie zur Klassifikation von Texten.

Als vorteilhaft gilt, dass CBR auch bei schlecht strukturierten und unvollständig beschriebenen Problemen angewendet werden kann. Im Gegensatz zu benachbarten Konzepten (siehe unten) genügt anfänglich schon eine vergleichsweise kleine Sammlung von Referenzfällen, die durch die Arbeit mit dem CBR-System nach und nach anwächst. Auch in Anwendungsdomänen, deren genaue Wirkungszusammenhänge nicht vollständig bekannt sind, eignet sich CBR.

Wie immer, wenn man mit Analogien argumentiert, ist darauf zu achten, dass die vom System generierten Lösungsvorschläge für das vorliegende Problem adäquat sind, ob also beispielsweise die Voraussetzungen, auf denen die historische Lösung basierte, immer noch erfüllt sind usw. (Veralterung des Wissens).

Einordnung

Das Case-Based Reasoning ist ein Teilgebiet der Künstlichen Intelligenz und kann hierin zu den maschinellen Lernverfahren gerechnet werden. Der Lernprozess basiert auf Analogie, im Unterschied zum Lernen durch Induktion und Deduktion. Aufgrund zahlreicher Anwendungsmöglichkeiten in Unternehmen (siehe oben) beschäftigt man sich nicht nur in der (Kern-)Informatik, sondern auch in der Wirtschaftsinformatik mit CBR.

Literatur

  • Kolodner, Janet: Case-Based Reasoning, Morgan Kaufmann Publishers (1993), ISBN 1-55860-237-2
  • Aamodt, Agnar; Plaza, Enric: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches, AICOM 7 (1994) 1, S. 39-59; PDF-Version.
  • Richter, Michael M.: Fallbasiertes Schließen. In: Görz, Günther; Rollinger, Claus-Rainer; Schneeberger, Josef (Hrsg.): Handbuch der Künstlichen Intelligenz. 4. Auflage, München/Wien 2003, S. 407-430. ISBN 3486272128.
  • Bergmann, Ralph: Experience Management: Foundations, Development Methodology, and Internet-Based Applications, LNAI 2432, Springer (2002), ISBN 3-540-44191-3
  • Bergmann, R., Althoff, K.D., Breen, S., Göker, M., Manago, M., Traphöner, R. & Wess, S. Developing industrial case-based reasoning applications: The INRECA methodology. 2. Überarbeitete Auflage. Lecture Notes in Artificial Intelligence, Springer Verlag.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Case-based reasoning — (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems. An auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case based reasoning. A… …   Wikipedia

  • Case-Based Reasoning — Das fallbasierte Schließen (engl. case based reasoning, franz. raisonnement par cas, span. Razonamiento basado en casos) ist ein maschinelles Lernverfahren zur Problemlösung durch Analogieschluss. Das zentrale Element in einem CBR System ist eine …   Deutsch Wikipedia

  • Case Based Reasoning — Raisonnement par cas Pour les articles homonymes, voir CBR. Pour résoudre les problèmes de la vie quotidienne, nous faisons naturellement appel à notre expérience. Nous nous remémorons les situations semblables déjà rencontrées. Puis nous les… …   Wikipédia en Français

  • Case Based Reasoning — Fallbasiertes Schliessen , Methode der KI, bei der der intelligente Einsatz der IF Abfrage als künstliche Intelligenz gewertet wird …   Acronyms

  • Case Based Reasoning — Fallbasiertes Schliessen , Methode der KI, bei der der intelligente Einsatz der IF Abfrage als künstliche Intelligenz gewertet wird …   Acronyms von A bis Z

  • Model-based reasoning — In artificial intelligence, model based reasoning refers to an inference method used in expert systems based on a model of the physical world. With this approach, the main focus of application development is developing the model. Then at run time …   Wikipedia

  • Reasoning — is the cognitive process of looking for reasons for beliefs, conclusions, actions or feelings. [ Kirwin, Christopher. 1995. Reasoning . In Ted Honderich (ed.), The Oxford Companion to Philosophy . Oxford: Oxford University Press: p. 748] Humans… …   Wikipedia

  • Case analysis — is one of the most general and applicable methods of analytical thinking, depending only on the division of a problem, decision or situation into a sufficient number of separate cases. Analysing each such case individually may be enough to… …   Wikipedia

  • Defeasible reasoning — is a kind of reasoning that is based on reasons that are defeasible, as opposed to the indefeasible reasons of deductive logic. Defeasible reasoning is a particular kind of non demonstrative reasoning, where the reasoning does not produce a full …   Wikipedia

  • Knowledge-based systems — According to the Free On line Dictionary of Computing (FOLDOC), a knowledge based system is a program for extending and/or querying a knowledge base.The [http://www.computeruser.com/resources/dictionary/ Computer User High Tech Dictionary]… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”