Cavalieri-Prinzip

Cavalieri-Prinzip
Die beiden Türme haben dasselbe Volumen, weil sie schichtweise dasselbe Volumen haben

Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen Mathematiker Bonaventura Cavalieri zurückgeht.

Inhaltsverzeichnis

Prinzip von Cavalieri

Das Prinzip von Cavalieri besagt:

Zwei Körper besitzen dasselbe Volumen, wenn ihre Schnittflächen mit Ebenen parallel zu einer Grundebene in entsprechenden Höhen den gleichen Flächeninhalt haben.[1]

Eine andere Formulierung lautet:

Liegen zwei Körper zwischen zueinander parallelen Ebenen E1 sowie E2 und werden sie von jeder zu diesen parallelen Ebene E' so geschnitten, dass gleich große Schnittflächen entstehen, so haben die Körper das gleiche Volumen.

Einordnung und Geschichte

In der modernen Herangehensweise über analytische Geometrie und Maßtheorie ist das Prinzip von Cavalieri ein Spezialfall des Satzes von Fubini. Cavalieri selbst hatte keinen strengen Beweis für das Prinzip, nutzte es jedoch als Rechtfertigung seiner Methode der Indivisibilien, die er 1635 in Geometria indivisibilibus und 1647 in Exercitationes Geometricae vorstellte. Hiermit konnte er für einige Körper die Volumen berechnen und über die Resultate von Archimedes und Kepler hinausgehen. Die Idee, das Berechnen von Volumina auf Flächen zurückzuführen, stellte einen wichtigen Schritt in der Entwicklung der Integralrechnung dar.

Aus dem Prinzip von Cavalieri lässt sich herleiten, dass das Volumen eines 'höhengedehnten' Körpers (bei gleichbleibender Grundfläche) proportional zu seiner Höhe ist. Als Beispiel: Ein Körper, dessen Höhe auf diese Weise verdoppelt wird, kann durch 2 gleiche Ausgangskörper konstruiert werden, indem zuerst alle äquivalenten Schnittflächen zusammengelegt werden und diese in der entsprechenden Reihenfolge des Ausgangskörpers aufgeschichtet werden (beide Ausgangskörper werden quasi ineinandergeschoben).

Anwendungsbeispiele

Zylinder

Zylinder

Die Schnitte eines Zylinders mit Ebenen senkrecht zur Rotationsachse sind Kreisscheiben mit Flächeninhalt πr2, wenn r den Radius der Grundfläche bezeichnet. Nach dem Prinzip von Cavalieri ist das Volumen des Zylinders gleich dem eines Quaders derselben Höhe h, dessen Grundfläche denselben Flächeninhalt hat, also beispielsweise die Kantenlängen r und πr hat. Das Volumen des Zylinders ist demnach \pi r^2\cdot h.

Halbkugel

Vertikale (oben) und horizontale (unten) Schnitte durch Halbkugel und Vergleichskörper

Der Schnitt einer Halbkugel vom Radius r mit einer Ebene, die in der Höhe h parallel zur Grundfläche verläuft, ist nach dem Satz des Pythagoras ein Kreis mit Radius

r'=\sqrt{r^2-h^2}.

Der Flächeninhalt der Schnittfläche ist demnach

\pi\cdot(r')^2=\pi\cdot(r^2-h^2).

Der Vergleichskörper ist in diesem Beispiel ein Zylinder mit derselben Grundfläche und Höhe wie die Halbkugel, aus dem ein auf der Spitze stehender Kreiskegel herausgeschnitten wurde. Die Schnittfläche in der Höhe h ist ein Kreisring mit äußerem Radius r und innerem Radius h, der Flächeninhalt ist also ebenfalls

\pi\cdot r^2-\pi\cdot h^2=\pi\cdot(r^2-h^2).

Also erfüllen die beiden Körper das Prinzip von Cavalieri und haben daher dasselbe Volumen. Das Volumen des Vergleichskörpers ist die Differenz der Volumina von Zylinder und Kegel, also

\pi\cdot r^2\cdot r-\frac13\cdot\pi\cdot r^2\cdot r=\frac23\pi\cdot r^3.

Verdoppelung liefert die bekannte Formel für das Kugelvolumen.

Bezug zur Integralrechnung

Differenz der Integrale und Integral der Differenz

Die Idee hinter dem Prinzip von Cavalieri findet sich vielfach in der Integralrechnung wieder. Ein Beispiel für um eins kleinere Dimensionen, also Längen der Schnitte von Geraden mit zwei Flächen, stellt die Gleichung

\int_a^b(f(x)-g(x))\,\mathrm dx=\int_a^bf(x)\,\mathrm dx-\int_a^bg(x)\,\mathrm dx

dar, die im Wesentlichen besagt, dass die Fläche A1 zwischen den Funktionsgraphen von f und g genauso groß ist wie die Fläche A2 unter dem Funktionsgraphen der Differenz x\mapsto f(x)-g(x); diese letztere Fläche ist aber gerade dadurch charakterisiert, dass ihre senkrechten Schnitte dieselbe Länge haben wie die Schnitte von A1.

In der modernen theoretischen Herangehensweise wird der Bezug zwischen Integral und Flächeninhalt bzw. Volumen jedoch typischerweise anders hergestellt; das Prinzip von Cavalieri ist dabei weniger wichtig.

Bezug zur Maßtheorie

Der Satz von Cavalieri in der oben beschriebenen elementaren Form ist ein Spezialfall des allgemeineren Satzes:

Sei A \subset \mathbb R^p \times \mathbb R^q messbar. Dann sind auch A_x = \{y \in \mathbb R^q | (x,y) \in A\} und A^y = \{x \in \mathbb R^p | (x,y) \in A \}

für fast alle x bzw. y messbar (über  \mathbb R^q bzw.  \mathbb R^p) und es gilt \lambda^{p+q}(A)  = \int_{\mathbb R^p} \lambda^q(A_x) d^p x bzw.  \lambda^{p+q}(A)  = \int_{\mathbb R^q} \lambda^p(A^y) d^q y, wobei λk das k-dimensionale Lebesgue-Maß (Volumen) bezeichne. Insbesondere gilt: Ist B \subset \mathbb R^{p+q} ebenfalls messbar und gilt λq(Ax) = λq(Bx) für fast alle x, so ist λp + q(A) = λp + q(B). Entsprechendes gilt für Ay und By.

Anmerkungen

  1. Diese Bedingung beinhaltet auch, dass die beiden Körper dieselbe Höhe haben.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Prinzip von Cavalieri — Die beiden Türme haben dasselbe Volumen, weil sie auf jeder Höhe dieselbe Querschnittsfläche aufweisen Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den …   Deutsch Wikipedia

  • Cavalieri — ist der Familienname folgender Personen: Bonaventura Cavalieri (1598–1647), italienischer Mönch, Mathematiker und Astronom Catarina Cavalieri (1755–1801), österreichische Sopranistin Diego Cavalieri (* 1982), brasilianischer Fußballspieler Emilio …   Deutsch Wikipedia

  • Cavalieri — Cavalieri,   1) Emilio de , italienischer Komponist, * Rom um 1550, ✝ ebenda 11. 3. 1602; war seit 1588 Generalintendant für alle künstlerischen Angelegenheiten am Hof der Medici in Florenz und schrieb zur Hochzeit Ferdinands von Medici mit… …   Universal-Lexikon

  • Cavalieri's principle — Two stacks of coins with the same volume In geometry, Cavalieri s principle, sometimes called the method of indivisibles, named after Bonaventura Cavalieri, is as follows:[1] 2 dimensional case: Suppose two regions in a plane are included between …   Wikipedia

  • Cavalierisches Prinzip — Die beiden Türme haben dasselbe Volumen, weil sie schichtweise dasselbe Volumen haben Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen… …   Deutsch Wikipedia

  • Satz des Cavalieri — Die beiden Türme haben dasselbe Volumen, weil sie schichtweise dasselbe Volumen haben Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen… …   Deutsch Wikipedia

  • Satz von Cavalieri — Die beiden Türme haben dasselbe Volumen, weil sie schichtweise dasselbe Volumen haben Das Prinzip von Cavalieri (auch bekannt als der Satz des Cavalieri oder Cavalierisches Prinzip) ist eine Aussage aus der Geometrie, die auf den italienischen… …   Deutsch Wikipedia

  • Bonaventura Francesco Cavalieri — Bonaventura Cavalieri Bonaventura Francesco Cavalieri (* 1598 wahrscheinlich in Mailand; † 3. Dezember oder 30. November 1647 in Bologna) war ein italienischer Mönch, Mathematiker und Astronom. Bonaventura Cavalieri arbeitete auf dem Gebiet der …   Deutsch Wikipedia

  • Francesco Bonaventura Cavalieri — Bonaventura Cavalieri Bonaventura Francesco Cavalieri (* 1598 wahrscheinlich in Mailand; † 3. Dezember oder 30. November 1647 in Bologna) war ein italienischer Mönch, Mathematiker und Astronom. Bonaventura Cavalieri arbeitete auf dem Gebiet der …   Deutsch Wikipedia

  • Bonaventura Cavalieri — Bonaventura Francesco Cavalieri (* 1598 wahrscheinlich in Mailand; † 3. Dezember oder 30. November 1647 in Bologna) war ein italienischer Jesuat[1], Mathematiker und Astronom …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”