Absolute Luftfeuchte

Absolute Luftfeuchte

Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der Luftfeuchte folglich nicht zugerechnet. Die Luftfeuchte ist eine wichtige Kenngröße für zahlreiche technische und meteorologische Vorgänge sowie für Gesundheit und Behaglichkeit.

Das geläufigste Maß für die Luftfeuchte ist die relative Luftfeuchte, angegeben in %. Sie bezeichnet das Verhältnis des momentanen Wasserdampfgehalts in der Atmosphäre zum maximal möglichen Wasserdampfgehalt bei derselben Temperatur. In der atmosphärischen Luft befinden sich immer mehr oder weniger große Mengen an Wasserdampf. Der Gehalt schwankt zeitlich und örtlich und wird als Luftfeuchte bezeichnet. Bei jeder Temperatur kann in einem bestimmten Luftvolumen nur eine Höchstmenge Wasserdampf enthalten sein.


Inhaltsverzeichnis

Luftfeuchte

Definition 1:

Unter der maximalen Luftfeuchte (Sättigungsmenge) versteht man die bei einer bestimmten Temperatur in einem Kubikmeter Luft maximal mögliche Wasserdampfmenge.

Definition 2:

Unter der absoluten Luftfeuchte versteht man die in einem Kubikmeter Luft tatsächlich enthaltene Wasserdampfmenge. Übliche Einheit: g/m3

Definition 3:

Unter der relativen Feuchte versteht man das Verhältnis der tatsächlich enthaltenen zur maximalen möglichen Masse (Menge) des Wasserdampfes in der Luft - übliche Einheit: %
Kondensierender Wasserdampf als indirekter Nachweis für die Luftfeuchte

Allgemeines

Ein wasserdampffreies Luftgemisch bezeichnet man als trockene Luft. Tabellen zur Zusammensetzung der Luft beziehen sich in der Regel auf trockene Luft, da der Wasserdampfanteil feuchter Luft mit 0 bis 4 Volumenprozent vergleichsweise sehr stark schwankt. Beeinflusst wird die Luftfeuchte vor allem durch die Verfügbarkeit von Wasser, die Temperatur und den Grad der Durchmischung der Atmosphäre. Höhere Lufttemperaturen ermöglichen eine höhere Wasserdampfkonzentration in der Luft. Bei sehr geringen Konzentrationen von Wasserdampf in der Luft bezeichnet man die Luftfeuchte auch als Spurenfeuchte.

Physikalische Grundlagen

Verdunstung und Kondensation

An einer freien Wasseroberfläche, die flüssiges Wasser vom darüber liegenden Luftvolumen trennt, treten stets einzelne Wassermoleküle vom Wasservolumen in das Luftvolumen über. Im flüssigen Wasser sind die Wassermoleküle durch molekulare Kräfte, vor allem durch die Wasserstoffbrückenbindungen, vergleichsweise stark aneinander gebunden, wodurch sich der zusammenhängende Flüssigkeitsverbund erst ausbilden kann. Infolge ihrer thermischen Bewegung tragen die Wassermoleküle jedoch jeweils gewisse Beträge an kinetischer Energie, die um einen temperaturabhängigen Mittelwert herum streuen. Ein kleiner Anteil von Wassermolekülen hat daher stets genügend thermische Energie, um die Bindungskräfte der umgebenden Moleküle zu überwinden, die Wasseroberfläche zu verlassen und in das Luftvolumen überzugehen, also zu verdunsten. Die Verdunstungsrate hängt vom Anteil derjenigen Moleküle ab, deren kinetische Energie die Bindungsenergie des Flüssigkeitsverbundes überschreitet und wird daher unter anderem von der herrschenden Temperatur bestimmt.

Umgekehrt treffen verdunstete Wassermoleküle aus der Luft auch wieder auf die Wasseroberfläche und können dort je nach ihrer kinetischen Energie mit einer gewissen Wahrscheinlichkeit vom Molekülverbund eingefangen werden, also kondensieren. Die Kondensationsrate ist sowohl abhängig von der Dichte der Wassermoleküle in der Luft als auch vom Luftdruck selbst.

Vier Größen beeinflussen die Menge dieses Stoffaustauschs:

  1. die Größe der Oberfläche (Verwirbelungen erhöhen diesen Wert im Vergleich zum ruhenden Wasser),
  2. die Temperatur des Wassers,
  3. die Temperatur der Luft und
  4. der Sättigungsgrad der Luft.

Sättigung

Betrachtet man einen Verdunstungsvorgang bei konstanter Temperatur und anfangs trockener Luft, so stellt sich die der Temperatur entsprechende Verdunstungsrate ein, während die Kondensationsrate mangels Wassermolekülen in der Luft zunächst gleich Null ist. Die Verdunstungsrate ist also größer als die Kondensationsrate, und die Anzahl von Wassermolekülen in der Luft steigt daher an. Damit wächst auch die Kondensationsrate, und die Nettoverdunstung (Verdunstungsrate minus Kondensationsrate) beginnt zu sinken. Die Dichte der Wassermoleküle in der Luft und damit die Kondensationsrate steigen so lange an, bis Kondensationsrate und Verdunstungsrate gleich sind, pro Zeiteinheit also ebenso viele Wassermoleküle vom Wasser in die Luft übertreten wie von der Luft ins Wasser. Dann ist der Gleichgewichtszustand erreicht, in dem die Nettoverdunstung null ist, obwohl ein ständiger Teilchenaustausch zwischen Luft und Wasser stattfindet.

Die im Gleichgewichtszustand vorliegende Konzentration von Wassermolekülen in der Luft ist die Sättigungskonzentration. Steigt die Temperatur, wird sich auch eine höhere Sättigungskonzentration einstellen, da die nun ebenfalls erhöhte Verdunstungsrate zur Erreichung eines neuen Gleichgewichts durch eine höhere Kondensationsrate wieder kompensiert werden muss, was eine höhere Teilchendichte in der Luft voraussetzt. Die Sättigungskonzentration hängt also von der Temperatur ab.

Die Sättigungskonzentration wird fast allein durch die Eigenschaften der Wassermoleküle und ihre Wechselwirkung mit der Wasseroberfläche bestimmt, es besteht keine wesentliche Wechselwirkung mit den anderen Atmosphärengasen. Wären jene Gase nicht vorhanden, so würde sich über dem Wasser praktisch dieselbe Sättigungskonzentration einstellen. Die umgangssprachlich gebräuchliche und wegen der Einfachheit auch in Fachkreisen weit verbreitete Ausdrucksweise, die Luft könne bei gegebener Temperatur maximal eine bestimmte Menge an Wasserdampf aufnehmen, ist irreführend. Die Luft nimmt die Feuchtigkeit nicht analog zu einem Schwamm auf, und auch der Begriff der Sättigung darf hier nicht analog zur Sättigung einer Lösung verstanden werden. Die Luft besteht aus selbstständig agierenden Gasteilchen, die im Wesentlichen nur über Stöße wechselwirken. Weder ist also Sauerstoff im Stickstoff, noch Wasserdampf in den anderen Luftbestandteilen gelöst. (Man stelle sich einen zur Hälfte mit Wasser gefüllten abgeschlossenen Behälter vor, in dem über der Wasseroberfläche ein Vakuum herrscht. Wird der Flüssigkeit kinetische Energie in Form von Wärme zugeführt, so können sich Teilchen mit genügend Energie von der Oberfläche lösen (Verdunsten).) Die Sättigungskonzentration ist somit von der kinetischen Energie der Wasserteilchen abhängig.

Aus demselben Grund wird die Sättigungskonzentration nicht von der Temperatur der Luft bestimmt, sondern von der Temperatur der verdunstenden Oberfläche. Der Bezug auf die Temperatur der Luft ist in der Alltagspraxis oft gerechtfertigt, da verdunstende Flächen geringer thermischer Trägheit meist näherungsweise Lufttemperatur annehmen (zum Beispiel an der Luft trocknende Wäsche). Ist jedoch die verdunstende Oberfläche deutlich wärmer als die Luft, so verdunsten die Wassermoleküle mit einer der Oberflächentemperatur entsprechenden Verdunstungsrate in die kühlere Luft hinein (Herdplatte), auch wenn deren Sättigungskonzentration dabei überschritten wird. Ein Teil der Feuchte kondensiert dann in der Luft an den kühleren Aerosolen, welche Lufttemperatur angenommen haben, und wird als Dampf- oder Nebelschwaden sichtbar (zum Beispiel Dunstschwaden über einem herbstlichen See). Ist die Oberfläche kühler als die Luft, so kann unter Umständen auch der Feuchtegehalt teilgesättigter Luft zu Übersättigung und Kondensation an der Oberfläche führen (zum Beispiel beschlagene Fenster in Küche oder Bad).

Übersättigung

Erhöht man durch eine Zufuhr von Wassermolekülen deren Konzentration über die Sättigungskonzentration (Übersättigung), so steigt wegen der größeren Dichte an Wassermolekülen in der Luft die Kondensationsrate vorübergehend über die Verdunstungsrate hinaus an und die Konzentration an Wassermolekülen sinkt daher wieder auf den Gleichgewichtswert.

Auch hier ist zu beachten, dass es sich nicht etwa um ein Unvermögen der Luft handelt, den überschüssigen Wasserdampf zu halten. Vielmehr nützt der Wasserdampf unter diesen Bedingungen eine sich darbietende Kondensationsfläche, um seine Konzentration durch heterogene Kondensation auf die Sättigungskonzentration zu senken. Fehlen solche Kondensationsflächen oder Kondensationskerne, so kann die Luft dauerhaft erhebliche Mengen von Wasserdampf aufnehmen, bis es schließlich zu einer spontanen Entstehung von Wassertröpfchen (homogene Kondensation) kommt. Dies ist zum Beispiel in großen Volumina möglichst reiner Luft, also bei einer geringen Aerosolkonzentration, und bei großer Entfernung von etwaigen Umschließungsflächen der Fall (siehe Nebelkammer). Spontane Kondensation von Wasserdampf zu Wassertröpfchen findet ohne Kondensationskeime erst bei extremer Übersättigung von mehreren hundert Prozent relativer Feuchte statt. In der Praxis ist jedoch fast immer eine ausreichend große Menge von Aerosolen in der Luft vorhanden, so dass es in der Atmosphäre kaum zu Übersättigungen von mehreren Prozentpunkten kommt.

Teilsättigung

Die Verdunstungsrate des Wassers kann bestimmte Maximalwerte nicht überschreiten. Es dauert daher längere Zeit, bis sich das Gleichgewicht nach einer Störung wieder eingestellt hat. Wurde zum Beispiel durch nächtliche Abkühlung ein Teil des Feuchtegehalts auskondensiert, so ist die Luft nach einer Erwärmung zunächst ungesättigt und kann den Sättigungszustand nur langsam wieder erreichen. Diese Teilsättigung ist für unsere Atmosphäre wegen der häufigen Temperaturschwankungen der Normalfall. Es ist für zahlreiche Vorgänge von großer Bedeutung, wie weit die Luft vom Sättigungszustand entfernt ist. Verschiedene Feuchtemaße dienen dazu, diesen Zustand quantitativ zu beschreiben.

Abhängigkeit der Sättigungskonzentration von Umgebungseinflüssen

Temperatur

Maximale Wasserdampfkonzentration in Abhängigkeit von der Temperatur

Bei Erhöhung der Temperatur nimmt der Anteil an Wassermolekülen zu, welche genügend kinetische Energie besitzen, um die Wasseroberfläche zu verlassen. Es stellt sich also eine höhere Verdunstungsrate ein, welche zur Wiederherstellung des Gleichgewichts durch eine höhere Kondensationsrate kompensiert werden muss, was aber eine höhere Konzentration von Wassermolekülen in der Luft voraussetzt.

Die Sättigungskonzentration des Wasserdampfs nimmt daher, wie in der Abbildung rechts dargestellt, mit steigender Temperatur exponentiell zu. Der Wasserdampf hat für jede Temperatur (und fast unabhängig vom Umgebungsdruck) eine eindeutig bestimmte Sättigungskonzentration. Bei atmosphärischem Normaldruck von 1013,25 hPa kann ein Kubikmeter Luft bei 10° Celsius maximal 9,41 Gramm Wasser aufnehmen. Die gleiche Luftmenge nimmt bei 30° Celsius jedoch bis zu 30,38 Gramm Wasser auf. Man bezeichnet diese Sättigungskonzentration als maximale Feuchte, die im Artikel Sättigung tabelliert ist. Hierbei sind auch Mollier-Diagramme nach Richard Mollier (1923) zur Darstellung der Luftfeuchte weit verbreitet. Eine andere Möglichkeit zur Darstellung des Zusammenhangs von Luftfeuchte, Temperatur und Höhenlage ist das Emagramm.

Druck

Wie oben erwähnt, ist die Sättigungskonzentration des Wasserdampfs bei gegebener Temperatur praktisch unabhängig von der Anwesenheit der übrigen Atmosphärengase und damit auch fast unabhängig vom Umgebungsdruck. Eine geringfügige Abhängigkeit vom Umgebungsdruck ergibt sich jedoch aus drei Gründen[1]:

  • Der Wasserdampf und die anderen Gase sind keine perfekt idealen Gase. Es gibt schwache Wechselwirkungen (van-der-Waals-Kräfte) zwischen ihren Molekülen, welche mit steigendem Druck zunehmen.
  • Der gegenseitige Abstand der Moleküle im flüssigen Wasser und damit ihre Bindungskräfte werden geringfügig durch den auflastenden atmosphärischen Druck verändert („Poynting-Effekt“). Dies beeinflusst wiederum die Verdunstungsrate.
  • Auch im Wasser gelöste Atmosphärengase beeinflussen die Bindungskräfte und damit die Verdunstungsrate. Die Menge an gelösten Gasen ist abhängig von deren Partialdruck (Raoultsches Gesetz) und damit letztlich vom Gesamtdruck.

Diese schwache Druckabhängigkeit kann bei Bedarf durch einen Korrekturfaktor berücksichtigt werden. Er ist von Temperatur und Druck abhängig und bewegt sich bei atmosphärischen Bedingungen im Bereich von 0,5 % (Näheres im Artikel Sättigungsdampfdruck).

Aggregatzustand des Wassers

Betrachtet man statt einer flüssigen Wasseroberfläche eine Eisoberfläche, so gelten dieselben Überlegungen auch für Sublimation und Resublimation der Wassermoleküle. Im Eiskristallverband unterliegen die Wassermoleküle jedoch stärkeren Bindungskräften als in flüssigem Wasser, so dass die Sättigungskonzentration über einer Eisoberfläche geringer ist als über einer Oberfläche flüssigen (unterkühlten) Wassers derselben Temperatur. Dieser Umstand spielt eine wichtige Rolle bei der Bildung von Regentropfen in Wolken (Bergeron-Findeisen-Prozess).

Reinheit des Wassers

Relative Feuchte der Luft über gesättigten Salzlösungen
Substanz relative Feuchte Quelle
Ammoniumdihydrogenphosphat (NH4H2PO4) bei 23 °C 93 % [2]
Kaliumnitrat (KNO3) bei 38 °C 88,5 % [2]
Kaliumchlorid (KCl) bei 23 °C 85 % [2]
Natriumdichromat (Na2Cr2O7·2 H2O) bei 23 °C 52 % [2]
Lithiumchlorid (LiCl) bei 20 °C 11,3 % [3]
Magnesiumchlorid (MgCl2) bei 20 °C 33,1 % [3]
Natriumchlorid (NaCl) bei 20 °C 75,5 % [3]

Sind im Wasser andere Stoffe gelöst, so erschweren sie den Wassermolekülen das Verlassen der Wasseroberfläche, wodurch die Verdunstungsrate sinkt und sich eine geringere Sättigungskonzentration einstellt (sog. Lösungseffekt). In der Luft über gesättigten Salzlösungen stellen sich beispielsweise die in der Tabelle aufgeführten relativen Feuchten ein.

Obwohl die Luft über den Lösungen mit Feuchtigkeit gesättigt ist, betragen die betreffenden relativen Feuchten nicht 100 %, da die relative Feuchte stets auf die Sättigungskonzentration über einer ebenen und reinen Wasseroberfläche bezogen wird (siehe unten). Unterschreitet die Luft über der Salzlösung die betreffende Sättigungsfeuchte, so verdunstet Wasser aus der Lösung, um den Sättigungszustand wieder herzustellen. Überschreitet die Luft die Sättigungsfeuchte, so kondensiert ein Teil der Luftfeuchte an der Salzlösung. Diese wird dadurch verdünnt; soll sie zur Einhaltung definierter Verhältnisse salzgesättigt bleiben, so muss sie einen ausreichenden Bodensatz an ungelöstem Salz enthalten.

Der Lösungseffekt verdeutlicht nochmals, dass die Sättigungskonzentration in der Luft nicht von der Luft selbst, sondern von der verdunstenden Oberfläche bestimmt wird.

Oberflächenkrümmung des Wassers

Ist die Wasseroberfläche wie zum Beispiel bei einem Tropfen nach außen gekrümmt, so sind die Wassermoleküle an der Oberfläche weniger stark gebunden und können die Oberfläche leichter verlassen. Dieser Krümmungseffekt bedingt daher, dass die Verdunstungsrate steigt. Wenn gesättigte Luft mit kleinen Nebeltröpfchen im Gleichgewicht steht, beträgt ihre relative Feuchte daher etwas über 100 %.

Ist die Wasseroberfläche nach innen gekrümmt (wie zum Beispiel beim Meniskus in einer teilweise wassergefüllten Kapillare), so sind die Wassermoleküle an der Oberfläche stärker gebunden und können die Oberfläche weniger leicht verlassen – die Verdunstungsrate sinkt. Wenn gesättigte Luft in einem wasserhaltigen porösen Material mit den Menisken im Gleichgewicht steht, beträgt ihre relative Feuchte weniger als 100 %.

Feuchtemaße

Der Wassergehalt der Luft kann durch verschiedene so genannte Feuchtemaße angegeben werden. Synonym verwendbare Bezeichnungen werden durch einen Schrägstrich verdeutlicht, zusammengehörige Feuchtemaße stehen in der gleichen Zeile.

Absolute Luftfeuchtigkeit

Die absolute Luftfeuchtigkeit, auch Wasserdampfdichte oder kurz Dampfdichte (Formelzeichen: ρw, ρd, d oder a; nicht verbindlich festgelegt), ist die Masse des Wasserdampfs in einem bestimmten Luftvolumen, also dessen Dichte beziehungsweise Konzentration. Sie wird üblicherweise in Gramm Wasser pro Kubikmeter Luft angegeben. Nach oben begrenzt wird sie durch die maximale Feuchte ρw, max, die während einer Sättigung herrscht (zugehörige Formeln und Werte siehe dort).

Die absolute Luftfeuchtigkeit ist ein direktes Maß für die in einem gegebenen Luftvolumen enthaltene Wasserdampfmenge. Sie lässt unmittelbar erkennen, wie viel Kondensat maximal ausfallen kann oder wie viel Wasser verdunstet werden muss, um eine gewünschte Luftfeuchtigkeit zu erhalten.

Die absolute Luftfeuchtigkeit ändert sich bei einer Volumenänderung des betrachteten Luftpakets, auch ohne dass der Luft Wasserdampf hinzugefügt oder entzogen wird. Bei einer Kompression des Luftpakets werden die darin enthaltenen Wassermoleküle auf einen geringeren Raum konzentriert, ihre Anzahl pro Kubikmeter nimmt zu, die absolute Feuchte steigt; das Umgekehrte gilt bei einer Expansion des Luftpakets. Die Volumenänderung des Luftpakets kann durch Änderung seiner Temperatur oder seines Druckes verursacht werden. Beim Vergleich der Feuchtegehalte zweier Luftpakete sind daher gegebenenfalls ihre Temperatur- und Druckunterschiede zu berücksichtigen. Ein in der Atmosphäre aufgrund der Thermik aufsteigendes Luftpaket verringert beim Aufsteigen seine absolute Feuchte, auch wenn es dabei keinerlei Wasserdampf verliert, da es wegen der Abnahme des Luftdrucks mit der Höhe sein Volumen vergrößert. Die absolute Feuchte des Luftpakets ändert sich daher allein durch Auf- und Abwärtsbewegungen. Man bezeichnet dies auch als Verschiebungsvarianz oder Instationarität. Da die absolute Luftfeuchte zudem schwer zu messen ist, wird sie nur selten verwendet.

Die absolute Luftfeuchtigkeit ρw kann mittels folgender Formeln berechnet werden, wobei sich der erste Term durch die Umstellung der Zustandsgleichung idealer Gase ergibt:

\rho_w = \frac{e}{R_w \cdot T } = \frac{m_{\text{Wasserdampf}}}{V_{\text{gesamt}}}

Die einzelnen Formelzeichen stehen für folgende Größen:

Relative Luftfeuchtigkeit

Die relative Luftfeuchtigkeit (Formelzeichen: φ, f, U oder rF; nicht verbindlich festgelegt) ist das prozentuale Verhältnis zwischen dem momentanen Wasserdampfdruck und dem Sättigungswasserdampfdruck über einer reinen und ebenen Wasseroberfläche. Bei einer nichtprozentualen Angabe, also im Wertebereich 0 bis 1, spricht man auch vom Sättigungsverhältnis.

Die relative Feuchte lässt unmittelbar erkennen, in welchem Grade die Luft mit Wasserdampf gesättigt ist:

  • Bei einer relativen Luftfeuchtigkeit von 50 % enthält die Luft nur die Hälfte der Wasserdampfmenge, die bei der entsprechenden Temperatur maximal enthalten sein könnte.
  • Bei 100 % relativer Luftfeuchtigkeit ist die Luft vollständig mit Wasserdampf gesättigt.
  • Wird die Sättigung von 100 % überschritten, so schlägt sich die überschüssige Feuchtigkeit als Kondenswasser bzw. Nebel nieder.

Anhand der relativen Feuchte lässt sich daher leicht abschätzen, wie rasch Verdunstungsvorgänge ablaufen werden oder wie groß die Gefahr von Tauwasserbildung ist. Da die Verdunstung von Feuchtigkeit durch die Haut stark von der relativen Feuchte der Umgebungsluft bestimmt wird, stellt die relative Feuchte eine wichtige Kenngröße für das Behaglichkeitsempfinden dar (siehe unten).

Feuchtespeicherfunktionen für einige Baumaterialien

Ein zweiter Grund für die Bedeutung der relativen Feuchte liegt darin, dass sie den Ausgleichswassergehalt hygroskopischer Materialien bestimmt. Hygroskopische Materialien, insbesondere poröse Materialien wie Holz, Ziegel, Gipsputz, Textilien usw., nehmen beim Kontakt mit feuchter Luft Feuchtigkeit auf und binden die Wassermoleküle durch Adsorption an ihren Porenwänden. Die Menge der gebundenen Moleküle wird bestimmt durch die absolute Luftfeuchte einerseits (eine größere Wasserdampfkonzentration führt wegen der größeren Auftreffrate auf die Porenwandungen zu einer größeren Adsorptionsrate) und die Temperatur andererseits (eine höhere Temperatur führt zu einer größeren Desorptionsrate). Die Kombination dieser beiden einander entgegengerichteten Einflussgrößen führt dazu, dass der sich einstellende Ausgleichswassergehalt im Wesentlichen von der relativen Feuchte der Luft bestimmt wird. Die Feuchtespeicherfunktion eines Materials gibt an, welchen Wassergehalt das Material bei einer gegebenen relativen Luftfeuchte annimmt; sie ist nur wenig von der Temperatur abhängig. Zur Messung des Feuchtegehalts der Luft werden meist Materialien verwendet, deren zur Messung benutzte physikalische Eigenschaft von ihrem Wassergehalt abhängt (Längenänderung wegen Quellen und Schwinden, Kapazitätsänderung eines hygroskopischen Dielektrikums usw.). Da dieser Wassergehalt wiederum von der relativen Feuchte der Umgebungsluft bestimmt wird, messen solche Instrumente daher letztlich diese relative Feuchte, welche deshalb ein besonders leicht zu messendes und häufig benutztes Feuchtemaß ist.

Mit steigender Temperatur nimmt die Wasserdampfmenge, die zur Sättigung benötigt würde, zu. Das hat zur Folge, dass die relative Luftfeuchtigkeit eines gegebenen Luftpakets bei Erwärmung abnimmt. Die Angabe der Temperatur ist für die Vergleichbarkeit der Werte daher zwingend notwendig. So sind beispielsweise in einer als trocken erscheinenden Wüste mit einer Lufttemperatur von 34,4 °C und einer relativen Luftfeuchte von 20 % insgesamt 7,6 Gramm Wasserdampf in einem Kubikmeter Luft enthalten, was bei einer Lufttemperatur von 6,8 °C einer relativen Luftfeuchte von 100 % entspräche und somit zur Kondensation führen würde. Daher sind Phänomene wie Dunst oder Nebel ein Signal für eine hohe relative Luftfeuchtigkeit und gleichzeitig für tiefe Temperaturen. Die Wahrnehmung der Luft als trocken oder feucht liegt also eher an der Temperatur als an der tatsächlich in ihr enthaltenen Wassermenge.

Man kann die relative Luftfeuchtigkeit mit folgenden Formeln berechnen:

\varphi = \frac {e}{E} \cdot 100\,\% \approx \frac {\mu}{\mu_s} \cdot 100\, \% \approx \frac {\rho_w}{\rho_{w, \max}} \cdot 100\, \% \approx \frac {s}{S} \cdot 100\ \%

Die einzelnen Formelzeichen stehen für folgende Größen:

Spezifische Luftfeuchtigkeit

Die spezifische Luftfeuchtigkeit, auch Wasserdampfgehalt (Formelzeichen: s, q oder x) gibt die Masse des Wassers an, die sich in einer bestimmten Masse feuchter Luft befindet. Der Zahlenwertbereich geht theoretisch von 0 \le s \le 1, wobei für trockene Luft s = 0 ist und für luftfreien Dampf bzw. flüssiges Wasser s = 1 ist.

Diese Größe bleibt im Unterschied zu den vorherigen Feuchtemaßen bei Volumenänderungen des betrachteten Luftpakets unverändert, solange keine Feuchte zu- oder abgeführt wird. Nimmt z. B. das Volumen des Luftpakets zu, so verteilen sich sowohl die (unveränderte) Masse der feuchten Luft als auch die (unveränderte) Masse des Wasserdampfs auf ein größeres Volumen, das Verhältnis der beiden Massen im Luftpaket zueinander bleibt aber dasselbe. Die spezifische Luftfeuchtigkeit behält beispielsweise entlang eines kondensationsfreien Belüftungsrohres einen konstanten Wert, auch wenn die feuchte Luft dabei durch Rohrabschnitte unterschiedlicher Temperatur läuft oder auf ihrem Weg zum Beispiel wegen eines Drosselventils Druckänderungen erfährt. Auch ein in der Atmosphäre aufsteigendes Luftpaket behält den Zahlenwert seiner spezifischen Feuchte bei, solange keine Feuchte (etwa durch Verdunstung von Regentropfen) zugeführt oder (durch Kondensation des Wasserdampfes) abgeführt wird. Diesem Vorteil steht allerdings die schwierige Messung der spezifischen Luftfeuchtigkeit entgegen, die im Regelfall einem Labor vorbehalten bleibt.

Die maximale spezifische Luftfeuchtigkeit im Sättigungszustand, die sogenannte Sättigungsfeuchte, hat das Formelzeichen S (auch qs).

Die spezifische Luftfeuchtigkeit s kann mit folgenden Formeln berechnet werden, wobei die jeweilige Größe über den ersten Term definiert ist und alle nachfolgenden Terme Äquivalente oder Näherungen hierzu darstellen (fL – feuchte Luft; tL – trockene Luft; W – Wasserdampf bzw. Wasser). Von praktischer Bedeutung sind nur die letztgenannten Terme, alle anderen dienen der Herleitung und Nachvollziehbarkeit.

s := \frac{m_{\mathrm{W}}}{m_{\mathrm{fL}}} = \frac{m_{\mathrm{W}}}{m_{\mathrm{tL}} + m_{\mathrm{W}}} = \frac{\frac{m_{\mathrm{W}}}{V_{\mathrm{G}}}}{\frac{m_{\mathrm{tL}}}{V_{\mathrm{G}}} + \frac{m_{\mathrm{W}}}{V_{\mathrm{G}}}} = \frac{\rho_{\mathrm{W}}}{\rho_{\mathrm{tL}} + \rho_{\mathrm{W}}} = \frac{\rho_{\mathrm{W}}}{\rho_{\mathrm{fL}}}
s = \frac{\rho_{\mathrm{W}}}{\rho_{\mathrm{tL}} + \rho_{\mathrm{W}}} 
= \frac{\frac{e}{R_{\mathrm{W}} \cdot T}}{\frac{p - e}{R_{\mathrm{tL}} \cdot T} + \frac{e}{R_{\mathrm{W}} \cdot T}} 
= \frac{ M_{\mathrm{W}} \cdot e }{ M_{\mathrm{tL}} \cdot (p - e) + M_{\mathrm{W}} \cdot e }
= \frac{\frac{M_{\mathrm{W}}}{M_{\mathrm{tL}}} \cdot e}{p - \left(1 - \frac{M_{\mathrm{W}}}{M_{\mathrm{tL}}}\right) \cdot e}

damit:

s \approx \frac{0{,}622 \cdot e}{p - 0{,}378 \cdot e} 
\approx 0{,}622 \cdot \frac{e}{p}

wobei gilt:

\rho_{\mathrm{W}} = \frac{e}{R_W \cdot T} \qquad \text{und} \qquad R_{\mathrm{W}} = \frac{R}{M_{\mathrm{W}}}
\rho_{\mathrm{tL}} = \frac{p - e}{R_{tL} \cdot T}\qquad \text{und} \qquad R_{\mathrm{tL}} = \frac{R}{M_{\mathrm{tL}}}

Die Sättigungsfeuchte errechnet sich dementsprechend nach:

S := \frac{m_{\mathrm{W\ bei\ S\ddot attigung}}}{m_{\mathrm{fL}}} = \frac{\rho_{\mathrm{W\ bei\ S\ddot attigung}}}{\rho_{\mathrm{fL}}} \approx \frac{0{,}622 \cdot E}{p - 0{,}378 \cdot E}

Die einzelnen Formelzeichen stehen für folgende Größen:

Mischungsverhältnis

Das Mischungsverhältnis (Formelzeichen: μ, x, m), auch Feuchtegrad genannt, gibt die Masse des Wassers an, die sich in einer bestimmten Masse trockener Luft befindet. In ihren Eigenschaften sind Mischungsverhältnis und spezifische Luftfeuchtigkeit identisch. Im Regelfall unterscheidet sich auch der Zahlenwert nicht sehr stark, weshalb man beide Größen genähert gleichsetzen kann.

Das Mischungsverhältnis kann mit folgenden Formeln berechnet werden, wobei es über den ersten Term definiert ist und alle nachfolgenden Terme Äquivalente oder Näherungen hierzu darstellen (fL – feuchte Luft; tL – trockene Luft; W – Wasserdampf bzw. Wasser):

\mu := \frac{m_{\mathrm{W}}}{m_{\mathrm{tL}}} = \frac{\rho_{\mathrm{W}}}{\rho_{\mathrm{tL}}} = \frac{M_{\mathrm{W}}}{M_{\mathrm{tL}}} \cdot \frac{e}{p - e} \approx 0{,}622 \cdot \frac{e}{p - e}

Die einzelnen Formelzeichen stehen für folgende Größen:

Taupunkt

Hauptartikel: Taupunkt

Feuchttemperatur

Die Feuchttemperatur ist jene Temperatur, die ein Luftpaket haben würde, wenn es adiabatisch bei konstantem Druck durch Verdunsten von Wasser in das Paket, bis zur Sättigung gekühlt, und dabei die benötigte latente Wärme dem Paket entzogen werden würde. (Quelle: Huschke, R.E. 1959, Glossary of Meteorology, American Meteorological Society, Boston) Gemessen wird sie mit Hilfe eines Psychrometers (zum Beispiel Aßmannsches Aspirationspsychrometer). Bei Kenntnis von Temperatur und Luftfeuchtigkeit kann man die Feuchttemperatur aus einer sogenannten Psychrometertabelle ablesen. Die Formel für die Feuchttemperatur lautet:

T_\mathrm{f} = T\cdot \exp \left(L \cdot \frac{m-m_s{_{T_f}}}{c_p \cdot T}\right)

wobei

  • Tf – Feuchttemperatur
  • L – Phasenumwandlungswärme bei Kondensation/Verdunstung (~2450 kJ/kg)
  • m – Mischungsverhältnis
  • ms – Sättigungsmischungsverhältnis bei Feuchttemperatur(!)
  • T – abs. Temperatur
  • cp – spezifische Wärme von Luft = 1005 J/(kg·K)

Diese Gleichung ist transzendent, und daher nur numerisch lösbar! Allerdings wurden zahlreiche empirische Formeln entwickelt die aber meist nur in einem bestimmten Temperatur- und Druckbereich gut funktionieren.

In der angewandten Meteorologie wird sie oft zur Unterscheidung der Niederschlagsart (Schnee/Regen) an unbemannten Wetterstationen eingesetzt. Als Richtwert gilt, dass Niederschlag bei einer Feuchttemperatur größer oder gleich 1,2 °C als Regen, bei Tf kleiner oder gleich 1,2 °C als Schnee fällt. Allerdings lassen sich damit nur grobe Abschätzungen machen. Jüngste Untersuchungen für die Station Wien Hohe Warte (WMO: 11035) haben gezeigt, dass Niederschlag bei Tf unter 1,1 bzw. über 1,4 °C in 2/3 der Fälle in fester, bzw. flüssiger Form auftritt. Im wesentlichen konnte der Richtwert von 1,2 °C Feuchttemperatur also bestätigt werden. (Quelle: Rohregger, J. 2008: Methoden zur Bestimmung der Schneefallgrenze, Diplomarbeit am Institut für Meteorologie und Geophysik der Universität Wien)

Messung

Haar-Hygrometer
Feuchtigkeitsindikator zum Beilegen zu feuchteempfindlichen Gütern

Geräte zur Messung der Luftfeuchtigkeit werden als Hygrometer bezeichnet. Arten sind zum Beispiel Absorptionshygrometer (Haarhygrometer), Taupunkt-Hygrometer, Psychrometer.

Feuchtesensoren liefern ein elektrisches Signal, Adsorptionssensoren beruhen auf einer sich bei unterschiedlicher Wasseraufnahme ändernden elektrischen Eigenschaft bestimmter Materialien und Materialaufbauten. Beispiele für elektrische Sensoren sind unter Anderem Impedanz-Sensoren, hier ist es die elektrischen Leitfähigkeit die sich ändert, bei Kapazitiven Sensoren wirkt die Feuchte auf das Dielektrikum und ändert so die Kapazität des Sensors oder bei Schwingquarz basierten Feuchtesensoren verändert sich durch die Feuchte die Resonanzfrequenz des Quarzes. Messumformer werden häufig auch als Sensoren bezeichnet. Ein Messumformer liefert, im Unterschied zu einem Sensor, jedoch ein genormtes Signal für einen voreingestellten Messbereich, z. B. ein 0 bis 10 V Signal oder ein 0/4 bis 20 mA Signal. Intern besteht ein solcher Messumformer aus zwei Komponenten, einem Sensor und einer elektronischen Einheit, welche das genormte Signal formt.

In den weltweiten offiziellen Wetterstationen werden zur Messung der Luftfeuchte verschiedene Messgeräte benutzt. Eine Methode ist ein in der Klimahütte montiertes Aspirationspsychrometer, welches aus einem trockenen und einem feuchten Thermometer besteht. Aus den Werten beider Thermometer kann man anhand einer Tabelle dann die aktuelle relative Luftfeuchte in Prozent und den Taupunkt ermitteln. Weiterhin gibt es separate Messfühler für den Taupunkt, welche aus einem Sensor über einer Lithiumchloridlösung bestehen.

Feuchtigkeitsindikatoren bestehen zum Beispiel aus mit Kobaltchlorid versetztem Silicagel (Blaugel) und führen bei bestimmten Feuchtigkeitswerten einen Farbwechsel aus. Sie dienen dazu, feuchteempfindlichen Gütern beigelegt zu werden, um insbesondere in tropischen Gegenden und bei starken Temperaturunterschieden deren Transportbedingungen hinsichtlich der relativen Luftfeuchtigkeit kontrollieren zu können. Blaugel (oder das kobaltfreie Orangegel) wird auch in hermetisch verschlossenen Baugruppen hinter Sichtfenstern untergebracht, um die Luftfeuchtigkeit im Inneren kontrollieren zu können.

Variabilität

Tagesgang

Die Luftfeuchtigkeit zeigt einen typischen Tagesgang, der zwar je nach Umgebungsbedingungen sehr unterschiedlich sein kann und auch nicht immer einem bestimmten Muster folgen muss, genau dies aber im Regelfall tut. So zeigt sich für das sommerliche Berlin in etwa der folgende Verlauf: um sieben Uhr Ortszeit liegt die absolute Luftfeuchtigkeit im Mittel bei etwa 10,6 g/m³, dann um 14 Uhr bei 10,0 g/m³ und schließlich um 21 Uhr wieder bei 10,6 g/m³. Im Winter zeigen sich morgens 4,5 g/m³, mittags 4,6 g/m³ und abends wiederum 4,5 g/m³. Die Luftfeuchtigkeit steigt also im Winter nach Sonnenaufgang und sinkt nach Sonnenuntergang, genau entgegengesetzt zum Tagesgang der Lufttemperatur und so wie man es aufgrund der erhöhten Verdunstung erwarten würde. Im Sommer kommt der Einfluss der Konvektion hinzu, da aufsteigende Luftpakete das Eindringen trockenerer Luftmassen aus der Höhe bedingen und daher zu einem mittäglichen bis nachmittäglichen Minimum führen. In den Abendstunden steigt die absolute Luftfeuchte mit nachlassender Konvektion jedoch wieder. Im Sommer zeigen sich daher zwei Dampfdruckmaxima, eines um etwa 8 Uhr und eines um etwa 23 Uhr.

Der Verlauf der relativen Luftfeuchtigkeit erreicht nachts (insbesondere bei fehlender Bewölkung) in Bodennähe oft 100 %, da die bodennahen Luftschichten durch Kontakt mit dem sich durch Abstrahlung in den Weltraum abkühlenden Erdboden unter den Taupunkt gelangen. Die Folge sind Tau bzw. Reif.

Jahresgang

Im Jahresgang, basierend auf entweder Tages- oder Monatsmitteln als langjährigen Durchschnittswerten, zeigen sich Maxima der relativen Luftfeuchtigkeit im Spätherbst und Frühwinter, also im Zeitraum der größten Nebelbildung. Demgegenüber stehen Minimalwerte im Frühjahr und Frühsommer. Der Dampfdruck ist im Winter am geringsten und im Sommer am höchsten. Die bestimmenden Einflüsse sind dabei Verdunstung und Advektion von Wasserdampf, die einen sehr starken regionalen bzw. lokalen Bezug aufweisen.

Abhängigkeit von der Höhe

Der Wasserdampfdruck nimmt mit zunehmender Höhe und damit abnehmender Lufttemperatur zunächst sehr rasch und dann ab drei Kilometern nur noch langsam ab. In zehn Kilometern Höhe beträgt er dann nur noch etwa ein Prozent des Bodenwertes. Die relative Luftfeuchtigkeit zeigt keinen derart eindeutigen Trend, ist in der Tropopause, in Mitteleuropa etwa ab 11 Kilometern Höhe, jedoch meist sehr gering. Sie beträgt hier im Normalfall etwa 20 % und sinkt mit zunehmender Höhe weiter ab, was auch der Grund dafür ist, dass die Wolkenbildung fast ausschließlich auf die Troposphäre begrenzt ist.

Bedeutung und Anwendungsbereiche

Die Luftfeuchtigkeit ist in einer Vielzahl von Anwendungen von Bedeutung, wobei hier die Meteorologie und Klimatologie zwar deren theoretisches, nicht aber deren anwendungsorientiertes Zentrum bilden. Die Rolle des Wasserdampfes, dessen Eigenschaften und insbesondere seine technischen Anwendungen außerhalb der atmosphärischen Bedingungen werden dort erläutert. Die allgemeinen Eigenschaften des Wassers und dessen natürliche Verbreitung können gesondert nachgelesen werden.

Alltag

Im Alltag lassen sich zahlreiche Phänomene auf die Luftfeuchte zurückführen, von denen einige hier exemplarisch vorgestellt werden sollen.

Beobachtet man nasse Gegenstände oder offene Wasserflächen über einen längeren Zeitraum, ohne dass diesen von außen weiteres Wasser zugeführt wird, so nimmt deren Nässe ab bzw. die Wasserfläche trocknet aus. Wäsche wird mit der Zeit trocken, Pfützen verschwinden, Lebensmittel werden hart und ungenießbar. Es kommt zur Verdunstung. Diese ist jedoch nur so lange möglich, wie die Luft ungesättigt ist, die relative Luftfeuchte also unter 100 % liegt.

Eisblumen

Betritt man aus der kühleren Umgebung kommend einen geheizten Raum, so stellt man oft fest, dass Brillengläser beschlagen. Gleiches gilt auch für Fensterscheiben. Sind die Scheiben kälter als der Innenraum, so beschlagen sie. Zum Beispiel auch bei Kraftfahrzeugen wird dadurch das Sichtfeld eingeschränkt. Der gleiche Effekt tritt in Bädern und Saunen auf, hier beschlagen oft auch Spiegel und andere kältere Gegenstände. Grund für all diese Effekte sind die kalten Oberflächen, die die Luft in ihrer unmittelbaren Umgebung abkühlen: je höher die relative Luftfeuchte der Luft ist, desto schneller erreicht sie beim Abkühlen den Taupunkt und Wasser kondensiert. Je höher der Temperaturunterschied zwischen den Oberflächen und der Umgebungsluft ist, desto stärker ist die Neigung zur Betauung bzw. zum Beschlagen. Aus diesem Grunde zeigen sich die beschriebenen Fälle vor allem im Winter, in feuchten Räumen, an Außenwänden und im Freien nachts bei unbedecktem Himmel (Abkühlung der Erdoberfläche durch Abstrahlung in den Weltraum). Sinken die Temperaturen der Oberflächen unter 0 °C, bilden sich Eisblumen oder Reif. Gegenmaßnahmen gegen Betauung und Bereifung:

  • Beblasen der Scheiben mit warmer Luft
  • Heizkörper in Wohnräumen befinden sich an Außenwänden und unter Fenstern
  • Beheizen der Gegenstände (Heckscheibe von KFZ, Flugzeug-Komponenten)

Der Effekt führt auch zum Vereisen von Gefrierfächern bzw. des Verdampfers in Kühlschränken und Gefriertruhen bei gleichzeitiger Austrocknung unverpackter Kühlware. Deren Wasser verdunstet bzw. sublimiert zunächst, um dann an kalten Oberflächen zu kondensieren bzw. zu Eis zu resublimieren. Technische Verwendung findet dieser Effekt bei der Gefriertrocknung.

Die Vereisung von Vergasern von Ottomotoren (zum Beispiel in Kraftfahrzeugen oder kleinen Flugzeugen) führt zum Motorausfall. Sie beruht im Wesentlichen auf der Abkühlung der Luft aufgrund der Verdunstungskälte des Benzins, teilweise auch aufgrund des Unterdruckes, der die Luft zusätzlich abkühlt.

Nebelbildung in Randwirbeln

Die Unterschreitung des Taupunktes kann man auch bei Flugzeugen oder schnellen Rennautos beobachten. Die Randwirbel an den Enden der Tragflächen oder eines Spoilers führen zu einem lokalen Absinken des Luftdruckes und nach dem 2. Gesetz von Gay-Lussac zu lokaler Abkühlung der Luft. Der Taupunkt wird lokal unterschritten und dort entsteht Nebel. Ist die Luftfeuchtigkeit bei Temperaturen unter Null besonders hoch, kommt es bei Flugzeugen zur gefürchteten Tragflächenvereisung – dann reicht bereits der Unterdruck oberhalb und hinter den Tragflächen und Leitwerken, um eine Bereifung auszulösen.

Die Ausatemluft ist beim Menschen und homoiothermen Tieren wesentlich feuchter und wärmer als die Einatemluft. Dies erkennt man am zu sichtbaren Nebelschwaden kondensierenden Wasserdampf der Ausatemluft im Winter bzw. bei niedrigen Temperaturen und hoher Luftfeuchtigkeit. Die warmfeuchte Ausatemluft kühlt sich unter den Taupunkt ab und es kommt zur Entstehung von Wassertröpfchen. Gleiches gilt auch für die Abgase von Fahrzeugen, Flugzeugen und Kraftwerken, deren Wolkenbildung bzw. Kondensstreifen oft mit deren Schadstoffemission verwechselt werden.

Meteorologie, Klimatologie und Hydrologie

Wird mit Wasserdampf gesättigte Luft unter den Taupunkt abgekühlt, so scheidet sich flüssiges Wasser durch Kondensation aus der Luft ab, falls die hierfür notwendigen Kondensationskerne (Aerosole) vorhanden sind. Diese liegen jedoch unter natürlichen Bedingungen fast immer in ausreichender Konzentration vor, so dass es nur in Ausnahmefällen zu markanten Übersättigungen von mehreren Prozentpunkten kommt. Die Kondensation und ab Temperaturen unter 0 °C auch Resublimation des Wasserdampfs führen unter anderem zur Wolken-, Schnee-, Nebel-, Tau- und Reifbildung. Wasserdampf ist daher kein permanentes Gas der Atmosphäre und weist mit einer statistischen Verweildauer von etwa zehn Tagen eine hohe Mobilität auf.

Obwohl der Wasserdampf nur mit relativ geringen Konzentrationen in der Atmosphäre vertreten ist, trägt er bedingt durch seine hohe Mobilität und den damit verbundenen Stoffumsatz einen großen Anteil am globalen Wasserkreislauf und spielt daher in der Wasserbilanz eine wichtige Rolle. Hierbei ist die Luftfeuchte auch eine wichtige Eingangsgröße zur Niederschlagsbildung bzw. deren Berechnung und auch zur Bestimmung der Verdunstung bzw. der Evaporation, Transpiration und Interzeptionsverdunstung. Dies spielt im Rahmen der klimatischen Wasserbilanz wiederum eine wesentliche Rolle für verschiedene Klimaklassifikationen.

Aus der Luftfeuchte lassen sich zudem wichtige meteorologische Größen ableiten, wie zum Beispiel das Kondensationsniveau und die virtuelle Temperatur. Auch ist die Luftfeuchte bzw. der Wasserdampf wesentlich am Strahlungshaushalt der Atmosphäre beteiligt – Wasserdampf ist das bedeutendste Treibhausgas. Wasserdampf, insbesondere jedoch Wolken verhindern stark die nächtliche Abkühlung der Erdoberfläche, da sie durch Absorption und Re-Emission einen Ausgleich der Strahlungsbilanz der Wärmeabstrahlung der Erdoberfläche herstellen.

Die im flüssigen Aggregatzustand des Wassers gespeicherte latente Wärme beeinflusst stark den atmosphärischen Temperaturgradienten, insbesondere den feuchtadiabatischen Temperaturgradienten.

Trocknung

Bei der Trocknung von Materialien durch Verdunstung ist entscheidend, dass zwischen dem Wassergehalt des Trockengutes und der Luftfeuchtigkeit ein Gradient besteht. Bei einer relativen Luftfeuchte von 100 % kann das Trockengut daher nicht weiter trocknen, es stellt sich ein Gleichgewicht ein. Bei Trocknungsverfahren, zum Beispiel in Trocknern, auch Wäschetrocknern, versucht man daher, die relative Feuchte der Umgebung zu senken. Das kann durch Temperaturerhöhung, Luftaustausch (Fön, Ablufttrockner), durch Adsorption des Wassers (Adsorptionstrockner) oder durch Auskondensation des Wassers (Kondenstrockner) erfolgen.

In anderen Fällen wird hingegen in der Regel auf die Wirkung des Windes vertraut, der ständig neue ungesättigte Luft heranweht und so beispielsweise Heu, frisch geschlagenem Holz, Mörtel, aufgehängter Wäsche, Tabakblättern, Kaffee- oder Kakaobohnen das Wasser entzieht.

Biologie

In der Biologie und hier besonders der Ökologie ist die Luftfeuchtigkeit von großer Bedeutung. Sie bedingt nicht nur das Auftreten von Klimazonen oder bestimmten Ökosystemen, sondern spielt auch bei der Transpiration über die Spaltöffnungen der Blätter und in deren Interzellularraum (Interzellulare) eine große Rolle (Wasserdampfpartialdruck). Die Luftfeuchte ist daher ein wichtiger Parameter für den Wasserhaushalt von Pflanzen und Tieren (Schwitzen). Eine besondere Rolle spielt die Luftfeuchte zudem für Tiere, die hauptsächlich über die Haut atmen. Hierzu zählen viele Schnecken und andere Weichtiere, die in der Folge auch eine geringe Toleranz gegen Austrocknung besitzen.

Gesundheit

In Wohnräumen wird eine relative Luftfeuchtigkeit von 45–55 % empfohlen.

Ursachen und gesundheitliche Risiken bei zu geringer Luftfeuchtigkeit:

Vor allem in geschlossenen, stark belüfteten und gut beheizten Räumen wird dieser Wert jedoch oft unterschritten, was zu einer verminderten Atemleistung und einer Beeinträchtigung der Haut bzw. Schleimhaut führen kann. Dies ist besonders im Winter der Fall, da die kalte Außenluft dann nur eine geringe absolute Luftfeuchte besitzt und durch das Erwärmen auf Zimmertemperatur die relative Luftfeuchte sehr stark absinkt. Bei zu stark sinkender Luftfeuchtigkeit kann durch eine Reduzierung von Undichtigkeiten der ungewollte Luftaustausch verringert werden. Die Luftfeuchtigkeit sollte jedoch auch im Bereich der kältesten Stellen des Raumes (Außenwände hinter Möbeln) nicht über 80 % ansteigen, da bei höheren Werten Schimmelwachstum nicht auszuschließen ist. Je nach Nutzung und Wärmedämmung der Räume ergeben sich zur Vermeidung von Schimmelwachstum oft Werte der Luftfeuchtigkeit, die deutlich unter den medizinisch empfohlenen liegen.

In sehr kalten Gebieten oder auch kalten Jahreszeiten bzw. in der Nacht zeigt sich oft ein erhöhter Flüssigkeitsverbrauch des menschlichen Organismus, obwohl aufgrund des fehlenden Flüssigkeitsverlustes durch Schwitzen eher das Gegenteil angenommen werden müsste. Begründet liegt dies in der Befeuchtung der trockenen Einatemluft und dem damit verbundenen Wasserverlust. Wird die kalte Außenluft beim Einatmen erwärmt, so steigt deren Wasserdampfkapazität und senkt damit auch die relative Luftfeuchte. Im Gegensatz hierzu steigt das Sättigungsdefizit an und die Neigung des flüssigen Lungengewebs-Wassers, in den gasförmigen Aggregatzustand überzugehen, nimmt zu. Im Sommer bzw. bei warmer Umgebungsluft wird die Einatemluft kaum noch zusätzlich erwärmt und behält daher ihre meist hohe relative Luftfeuchtigkeit. Sind die zusätzlichen Wasserverluste durch Schwitzen hier nicht allzu groß, ist der Wasserbedarf des Körpers daher bei kalten Umgebungsbedingungen höher.

Eine zu niedrige Luftfeuchtigkeit ist für die Atmung nicht förderlich, da der Sauerstoff über die Alveolen dann schlechter in die Blutbahn gelangt. Die Haut benötigt eine hohe Luftfeuchte, um nicht auszutrocknen, da diese eng mit der Hautfeuchtigkeit gekoppelt ist. Besonders Schleimhäute sind für Austrocknen anfällig, da sie nur über einen geringen Verdunstungsschutz verfügen und auf ihre hohe Feuchte zur Erhaltung ihrer Funktionen angewiesen sind. So kann eine geringe Feuchte der Nasenschleimhaut ein erhöhtes Auftreten von Nasenbluten zur Folge haben. Generell wird dabei auch die Immunabwehr der Haut geschwächt (erhöhtes Erkältungsrisiko) und deren Fähigkeit zum Stoffaustausch herabgesetzt, wovon besonders die Mundschleimhaut betroffen ist. Auch die Anfälligkeit für Hautreizungen bzw. -rötungen oder gar Hautentzündungen wird durch eine geringe Luftfeuchtigkeit erhöht.

Bei der Durchführung von Inhalationsnarkosen ist die Anfeuchtung des inhalierten Gasgemisches sehr wichtig, da die zur Anwendung kommenden medizinischen Gase wasserfrei gelagert werden und andernfalls die auftretenden Verdunstungseffekte in der Lunge des Patienten Auskühlungserscheinungen (Verdunstungskälte) und eine gewisse Austrocknung bewirken würden.

Gesundheitliche Risiken bei zu hoher Luftfeuchtigkeit:

Eine hohe relative Luftfeuchte behindert hingegen die Regulation der Körpertemperatur durch das Schwitzen und wird daher schnell als schwül empfunden. Trotz relativ gesehen höherer Temperaturen können daher sehr heiße Wüsten oft wesentlich leichter durch den Organismus verkraftet werden (vorausgesetzt er leidet nicht unter Austrocknung) als Regenwälder mit einer hohen Luftfeuchte und vergleichsweise gemäßigten Temperaturen. Dieser Effekt, den Luftfeuchtigkeit auf die gefühlte Temperatur besitzt, wird durch den Humidex beschrieben, wobei der grundsätzliche Zusammenhang zwischen einer steigenden Luftfeuchte und einer steigenden gefühlten Temperatur auch für niedrige Werte der Luftfeuchte gilt und somit beispielsweise zur Reduzierung der Zimmertemperatur und damit des Heizaufwandes herangezogen werden kann.

Land- und Forstwirtschaft

Sauerländer Wald im Nebel

In der Landwirtschaft besteht bei einer zu niedrigen Luftfeuchte die Gefahr einer Austrocknung der Felder und der angebauten Pflanzen und damit einer Missernte. Durch die Erhöhung des Dampfdruckgradienten zwischen Blattoberfläche und Atmosphäre wird den Pflanzen dabei Feuchtigkeit entzogen (siehe Abschnitt Biologie), insbesondere wenn ihre Spaltöffnungen am Tag geöffnet sind und sie nur über einen geringen Verdunstungsschutz verfügen, was bei vielen heimischen Pflanzen (C-3 Pflanzen), der Fall ist. Die Pflanzen erhöhen dadurch die Austrocknung des Bodens, andererseits schützen sie ihn vor direkter Sonneneinstrahlung und Erwärmung und fördern durch ihre Wurzeln Wasser aus tieferen Schichten an die Oberfläche. Viele Moor- und Sumpfpflanzen verfügen über einen Regelmechanismus, der die Verdunstungsrate bei beginnender Austrocknung senkt.

Die Wasserbilanz wird beim Freilandanbau wesentlich auch durch nächtlichen Tau verbessert – Pflanzen betauen eher als unbedeckter Erdboden, da sie sich nachts durch Wärmeabstrahlung schneller abkühlen als unbedeckter Boden mit seiner höheren Wärmekapazität.

Doch auch in der Forstwirtschaft und der holzverarbeitenden Industrie spielt die Luftfeuchte eine Rolle. Frisch geschlagenes Holz verfügt über eine hohe Eigenfeuchte, sie ist bei im Winter geschlagenem Holz geringer. Diese Holzfeuchte sinkt in der Zeit der Ablagerung ab und gleicht sich an die Luftfeuchte an. Wird zu frisches Holz verarbeitet, schwindet und verzieht es sich. Die Änderung der Holzfeuchte aufgrund wechselnder Luftfeuchte führt auch bei abgelagertem Holz zu sich ändernden Maßen des Holzes quer zur Faser und ist von großer Wichtigkeit für alle holzverarbeitenden Gewerbe und Industrien. Bei der Lagerung frischen Holzes in Sägewerken werden oft Sprinkleranlagen eingesetzt, um das Holz langsamer zu trocknen und so Schwindungsrisse zu vermeiden.

Auch abgelagertes Holz (Bretter, Kanthölzer und Balken) wird so gelagert, dass es von Luft umströmt wird und durch sein Eigengewicht parallel fixiert ist. Das soll garantieren, dass sich das Holz nicht verzieht oder gar fault. Beim Verlegen von Dielen- und Parkettfußböden muss beachtet werden, dass sich das Holz der Umgebungsfeuchte anpasst (Fasersättigungspunkt); es kann quellen oder schwinden. Aus diesem Grund werden auch Holzfässer bei Nichtbenutzung undicht.

Lagerhaltung und Produktion

Ein vorbereiteter Humidor mit Hygrometer

In der Lagerhaltung von Lebensmitteln ist die Luftfeuchtigkeit sehr wichtig zur Steuerung der Genussreife, vor allem bei Lagerobst. Auch Korrosion kann durch eine hohe Luftfeuchtigkeit begünstigt werden, besonders über den indirekten Effekt der gesteigerten Taubildung, und muss daher bei Lagerung und Transport feuchteempfindlicher Güter berücksichtigt werden. Beispiele, die bestimmte Luftfeuchtigkeit erfordern, sind Chemikalien, Zigarren (Humidor rechts), Wein (Korken!), Salami, Holz, Kunstwerke, Bücher und optische oder elektronische Baugruppen und Bauteile (zum Beispiel integrierte Schaltkreise). Die Luftfeuchte muss zur Einhaltung bestimmter Raumklimata in Lagerräumen, Museen, Archiven, Büchereien, Laboren, Rechenzentren und industriellen Produktionsanlagen (Mikroelektronik-Fertigung) überwacht oder gesteuert werden.

Beim Gütertransport in wetterisolierten Containern oder auch verschweißten Kunststoffbeuteln kann sich Kondenswasser und Betauung bilden, wenn die Luft im Inneren beim Sinken der Temperatur unter den Taupunkt gelangt (zum Beispiel beim Transport aus tropischen in kältere Gebiete). In Folienverpackungen feuchteempfindlicher Güter werden daher Beutel mit Silicagel oder Zeolithe gegeben, die die Feuchtigkeit puffern. Feuchtigkeitsindikatoren dienen dazu, die Feuchtigkeitswerte in den Verpackungen während des Transports zu kontrollieren. Feuchteempfindliche Geräte (Elektronik, Optik) müssen nach Lagerung bei geringen Temperaturen zunächst temperieren, bevor deren Verpackung geöffnet wird. Ansonsten bildet sich an und in den Geräten Kondenswasser, was insbesondere beim sofortigen Betreiben der betauten Geräte zum Ausfall führen kann.

Außenwände von Gebäuden

In der Bauphysik spielt der Taupunkt in Form der Taupunktebene eine wichtige Rolle. Unter dieser versteht man diejenige Fläche innerhalb des Mauerwerks oder der Wärmedämmung an der Außenwand eines Gebäudes, ab welcher es zur Kondensation kommen kann. Hintergrund ist, dass warme Luft mehr Feuchtigkeit aufnehmen kann als kalte Luft. Bewegt sich warme und mit Feuchtigkeit angereicherte Luft durch Diffusion oder Konvektion innerhalb der Außenwand oder Dämmschicht vom wärmeren zum kälteren Ort (meist von innen nach außen) entlang des Gradienten der relativen Feuchte, so kommt es zur Bildung flüssigen Wassers, sobald der Taupunkt unterschritten wird. Hieraus ergeben sich Gefahren gesundheitsgefährdender Schimmelbildung oder die Dämmschichten versagen aufgrund der Wasseraufnahme. Gegenmaßnahmen bestehen folglich dahin, eine Taupunktunterschreitung durch geeignete Baumaterialien oder andere Maßnahmen zu vermeiden. Die Wärmedämmung sollte daher möglichst an der Außenseite der Wand angebracht werden und ihrerseits nach außen diffusionsoffen sein, sodass sie Wasser an die trockene Außenluft abgeben kann. Ist dies nicht möglich (zum Beispiel bei Innendämmung), muss die Wärmedämmschicht nach innen mit einer Dampfsperre (geschlossene Folie, keine Wasserdiffusion möglich) oder Dampfbremse (Wasserdiffusion ist eingeschränkt möglich) versehen sein, um das Eindringen feuchter Raumluft in die Wärmedämmschicht zu verhindern. Das ist insbesondere dann wichtig, wenn das Mauerwerk, zum Beispiel durch einen Außenanstrich, ein geringes Diffusionsvermögen aufweist.

In der Winterperiode – in diesem Zusammenhang oft als Tauperiode bezeichnet – sind die Temperatur und der Wasserdampfdruck im Inneren höher als außen. Die Außenwand weist daher für beide Werte ein Gefälle nach außen auf. Dieses ist jedoch selbst bei einer homogenen Außenwand nicht gleich, da deren zeitabhängige Speicherwirkung für Wärme und Wasserdampf unterschiedlich ist und sich auch die Temperaturen und Dampfdrücke im Zeitablauf unterschiedlich ändern. Bei inhomogenen Wänden kommt hinzu, dass das Gefälle in den einzelnen Materialien unterschiedlich ist. So hat eine Dampfsperrfolie zum Beispiel ein großes Dampfdruckgefälle, jedoch hingegen kaum ein Temperaturgefälle. Bei Dämmstoffen ist es oft umgekehrt, hier ist das Gefälle des Wasserdampfdrucks klein, aber das Temperaturgefälle hoch. Kondensation tritt immer dann ein, wenn die relative Luftfeuchtigkeit örtlich vorübergehend oder (zum Beispiel im Winter) dauernd 100 % überschreitet.

Die Kondenswasserbildung kann auch durch Baustoffe mit hoher Wasserdampfdurchlässigkeit und/oder einem hohen Wasseraufnahmevermögen (Pufferung) bei gleichzeitig geringer Wärmeleitfähigkeit verhindert werden. Beispiele sind Stroh/Lehm oder Holz. Hierbei kann oft auf Dampfsperren verzichtet werden.

Das sachgemäße Belüften von Wohnräumen (insbesondere bei Sanierungen mit Außenanstrich, unsachgemäß angebrachten Dampfsperren und abgedichteten Fenstern) hat einen großen Einfluss auf die Vermeidung von Schimmelbildung.

Siehe auch: Dampfbremse, Dampfsperre, Niedrigenergiehaus, Baubiologie

Luft- und Raumfahrt

In der Luftfahrt besteht die Gefahr des Vereisens von Tragflächen und Leitwerk durch die Resublimation des in der Luft enthaltenen Wasserdampfes. Dieser Effekt kann die Flugfähigkeit binnen kürzester Zeit sehr stark einschränken und ist für zahlreiche Unfälle verantwortlich. Entgegengewirkt wird diesem Vorgang durch Enteisungsanlagen, welche die kritischen Bereiche (zum Beispiel Tragflächenvorderkante) beheizen um Eisansatz zu verhindern. Eine preisgünstigere Methode besteht darin die Tragflächenvorderkante mit einer Haut aus Gummi zu überziehen und stoßweise Druckluft zwischen die Gummihaut und die Tragfläche zu pressen. Die Haut wölbt sich und durch die Verformung wird das starre Eis abgesprengt.

In der Raumfahrt kommt es bei Raketenstarts zu ähnlichen durch niedrige Außentemperaturen bedingten Problemen. Startfenster werden daher auch nach meteorologischen Gesichtspunkten gewählt und Starts notfalls abgebrochen. Die Nichtbeachtung dieses Grundsatzes, meist in Verbindung mit technischen Mängeln, kann zu Katastrophen wie dem Absturz der Challenger-Raumfähre führen.

Literatur

  • H. Häckel: Meteorologie. UTB 1338. Ulmer Verlag, Stuttgart 1999 (4. Aufl.), ISBN 3-8252-1338-2
  • E. Zmarsly, W. Kuttler, H. Pethe: Meteorologisch-klimatologisches Grundwissen. Eine Einführung mit Übungen, Aufgaben und Lösungen. Ulmer Verlag, Stuttgart 2002, ISBN 3-8252-2281-0
  • P. Hupfer, W. Kuttler: Witterung und Klima. Teubner, Stuttgart/Leipzig 1998, ISBN 3-322-00255-1
  • W. Weischet: Einführung in die Allgemeine Klimatologie. Borntraeger, Berlin 2002, ISBN 3-443-07123-6

Weblinks

Quellen

  1. Bell, S. A., Boyes, S. J.: An Assessment of Experimental Data that Underpin Formulae for Water Vapour Enhancement Factor. National Physical Laboratory, UK, 2001 (PDF 168 KB)
  2. a b c d DIN 52615: Bestimmung der Wasserdampfdurchlässigkeit von Bau- und Dämmstoffen. Berlin 1987
  3. a b c Greenspan, L.: Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Bureau of Standards – A. Physics and Chemistry Vol. 81 A, No. 1 Januar-Februar 1977, S. 89–96 (pdf, 320 KB)

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Absolute Feuchte — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Absolute Luftfeuchtigkeit — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Luftfeuchte — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Relative Luftfeuchte — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Feuchteanteil — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Feuchtegrad — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Gasfeuchte — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Maximale Feuchte — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Mischungsverhältnis — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

  • Relative Feuchte — Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser (zum Beispiel Regentropfen, Nebeltröpfchen) oder Eis (z. B. Schneekristalle) werden der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”