DESARGUES (G.) — DESARGUES GÉRARD (1591 1661) Mathématicien français qui a introduit les premiers concepts de la géométrie projective. Desargues est né à Lyon, mais on connaît peu de chose sur les premières années de sa vie. Il a été conseiller technique du… … Encyclopédie Universelle
Desargues — (spr. däsárgh ), Gérard, Geometer, geb. 1593 in Lyon, gest. daselbst 1662, machte als Ingenieur die Belagerung von La Rochelle mit und lebte dann als Privatmann in Paris, später auf seinem Landgut bei Condrieux. Von ihm stammt die Vorstellung,… … Meyers Großes Konversations-Lexikon
Desargues — (Gérard) (1591 1662) mathématicien français … Encyclopédie Universelle
Desargues — [de zarg], Gérard oder Girard, französischer Mathematiker, getauft Lyon 2. 3. 1591, ✝ ebenda 8. 10. 1662; zuerst Offizier, später Baumeister und Kriegsingenieur; war technischer Berater Richelieus und der französischen Regierung; mit R.… … Universal-Lexikon
Desargues graph — Named after Gérard Desargues Vertices 20 Edges 30 … Wikipedia
Desargues (crater) — Coordinates 70°12′N 73°18′W / 70.2°N 73.3°W / … Wikipedia
Desargues' theorem — Perspective triangles. Corresponding sides of the triangles, when extended, meet at points on a line called the axis of perspectivity. The lines which run through corresponding vertices on the triangles meet at a point called the center of… … Wikipedia
Desargues, Girard — ▪ French mathematician born February 21, 1591, Lyon, France died October 1661, France French mathematician who figures prominently in the history of projective geometry. Desargues s work was well known by his contemporaries, but half a… … Universalium
Desargues , Girard — (1591–1661) French mathematician and engineer Little is known of the early life of Desargues except that he was born in Lyons in France. He did serve as an engineer at the siege of La Rochelle (1628) and later became a technical adviser to… … Scientists
Desargues's theorem — Geom. the theorem that if two triangles are so related that the lines joining corresponding vertices meet in a point, then the extended corresponding lines of the two triangles meet in three points, all on the same line. [named after G.… … Universalium