- Aerodynamisch
-
Aerodynamik (von altgriechisch ἀήρ, Luft und δύναµις, Kraft) ist Teil der Fluiddynamik und beschreibt das Verhalten von Körpern in kompressiblen Fluiden (zum Beispiel Luft). Die Aerodynamik beschreibt die Kräfte, die es beispielsweise Flugzeugen ermöglichen, zu fliegen oder Segelschiffen, sich mit Hilfe des Windes durchs Wasser zu bewegen. Viele weitere Bereiche der Technik, wie zum Beispiel das Bauingenieurwesen oder der Fahrzeugbau, müssen sich mit der Aerodynamik auseinandersetzen.
Inhaltsverzeichnis
Spezialgebiete
Die Aerodynamik ist ein Untergebiet der Strömungslehre (auch Fluiddynamik) und enthält mehrere Spezialbereiche, die sich auf verschiedene Schwerpunkte spezialisiert haben:
- Tragflügeltheorie: Bewegungen eines Flügels in dichtem Gas
- Raumfahrtaerodynamik: Dieses Gebiet befasst sich mit der Aerodynamik beim Flug- und Wiedereintritt von Raumflugkörpern
- Überschallaerodynamik: Flugkörper, die sich schneller als der Schall bewegen (Mach 1 bis Mach 3)
- Hyperschallaerodynamik: Flugkörper, die sich mit sehr hoher Geschwindigkeit in dichten Gasen bewegen (Mach 3+)
- Grenzschichttheorie: Es wird die eng anliegende Schicht im Nahbereich um Körper herum betrachtet
Theoretische Modelle
Das umfassendste Modell sind die Navier-Stokes-Gleichungen. Es handelt sich hierbei um ein System von nichtlinearen partiellen Differentialgleichungen 2. Ordnung, die ein newtonsches Fluid komplett beschreiben. Insbesondere sind auch Turbulenz und die hydrodynamische Grenzschicht enthalten.
Ein einfacheres Modell sind die Euler-Gleichungen, die aufgrund der vernachlässigten Reibung die Grenzschicht nicht abbilden und auch keine Turbulenz enthalten, womit beispielsweise ein Strömungsabriss nicht über dieses Modell simuliert werden kann. Dafür sind wesentlich gröbere Gitter geeignet, um die Gleichungen sinnvoll zu lösen. Für diejenigen Teile der Strömung, in denen die Grenzschicht keine wesentliche Rolle spielt, sind die Euler-Gleichungen dagegen sehr gut geeignet.
Die Potentialgleichungen schließlich sind vor allem nützlich, wenn grobe Vorhersagen gemacht werden sollen. Bei ihnen wird die Entropie als konstant vorausgesetzt, was bedeutet dass keine starken Schockwellen auftreten können, da an diese die Entropie sogar unstetig ist. Weitere Vereinfachung über konstante Dichte führt dann zur Laplace-Gleichung.
Anwendung
Heutzutage findet die aerodynamische Auslegung von Flug- und Fahrzeugen überwiegend am Computer statt. Von großer Bedeutung ist die numerische Strömungssimulation (CFD), bei der durch computergestützte Verfahren mit entsprechendem Rechenaufwand gute Näherungen für reale Strömungsvorgänge erzielt werden können.
Für viele Anwendungen sind aufgrund der enormen Komplexität der auftretenden Phänomene auch heute noch experimentelle Messungen in Windkanälen oder an Testkörpern notwendig, um die Auslegung zu verifizieren oder Risiken in der Entwicklung auszuschließen.
Literatur
- Cameron Tropea: Aerodynamik I & II, Forschungsberichte Strömungslehre und Aerodynamik, Aachen 2004, ISBN 3-8322-3255-9
- Reinhard Kutter: Flugzeug Aerodynamik - technische Lösungen und struktureller Aufbau. Motorbuch-Verlag, Stuttgart 1990, ISBN 3-87943-956-7
- Czesław A. Marchaj: Aerodynamik und Hydrodynamik des Segelns. Delius, Klasing, Bielefeld 1991, ISBN 3-7688-0729-0
- Theodore von Kármán: Aerodynamik - ausgewählte Themen im Lichte der historischen Entwicklung. Interavia, Genf 1956
- Ludwig Prandtl: Vier Abhandlungen zur Hydrodynamik und Aerodynamik. Selbstverl. d. Aerodynam. Versuchsanstalt, Göttingen 1944
- John D. Anderson: A history of aerodynamics - and its impact on flying machines. Cambridge Univ. Pr., Cambridge 2000, ISBN 0-521-45435-2
- Rose McCallen: The aerodynamics of heavy vehicles - trucks, buses, and trains. Springer, Berlin 2004, ISBN 978-3-540-22088-6
- J. Gordon Leishman: Principles of helicopter aerodynamics. Cambridge Univ. Press, Cambridge 2000, ISBN 0-521-66060-2
- John D. Anderson: Fundamentals of aerodynamics. McGraw-Hill, Boston 2007, ISBN 978-0-07-125408-3
- John J. Bertin, Russell M. Cummings: Aerodynamics for engineers. Pearson Prentice Hall,Upper Saddle River, NJ 2009, ISBN 978-013235521-6
Weblinks
Wikimedia Foundation.