Großer Roter Fleck

Großer Roter Fleck
Jupiter  Astronomisches Symbol des Jupiters.
Jupiter in natürlichen Farben mit Schatten des Mondes Europa, fotografiert von der Raumsonde Cassini
Jupiter in natürlichen Farben mit Schatten des Mondes Europa, aus Fotos der Schmalwinkelkamera der Raumsonde Cassini vom 7. Dezember 2000.
Eigenschaften des Orbits [1]
Große Halbachse 5,203 AE
(778,36 · 106 km)
Perihel – Aphel 4,95 – 5,46 AE
Exzentrizität 0,0484
Neigung der Bahnebene 1,305°
Siderische Umlaufzeit 11,86 Jahre
Synodische Umlaufzeit 398,88 Tage
Mittlere Orbitalgeschwindigkeit 13,07 km/s
Kleinster – größter Erdabstand 3,934 – 6,471 AE
Physikalische Eigenschaften [1]
Äquator – Poldurchmesser* 142.984 – 133.708 km
Masse 1,899 · 1027 kg
Mittlere Dichte 1,326 g/cm3
Hauptbestandteile
(Stoffanteil der oberen Schichten)
Fallbeschleunigung* 24,79 m/s2
Fluchtgeschwindigkeit 59,54 km/s
Rotationsperiode 9 h 55 min 30 s
Neigung der Rotationsachse 3,13°
Geometrische Albedo 0,52
Max. scheinbare Helligkeit −2,94m
Temperatur*
Min. – Mittel – Max.
165 K (–108 °C)
*bezogen auf das Nullniveau des Planeten
Sonstiges
Monde 63
Größenvergleich zwischen Erde (links) und Jupiter.

Jupiter ist mit einem Äquatordurchmesser von 142.800 Kilometern der größte Planet des Sonnensystems. Er ist mit einer durchschnittlichen Entfernung von 778 Millionen Kilometern von der Sonne aus gesehen der fünfte Planet. Aufgrund seiner chemischen Zusammensetzung zählt er zu den Gasplaneten („Gasriesen“) und hat keine sichtbare feste Oberfläche.

Diese Gasriesen werden nach ihm auch als jupiterähnliche (jovianische) Planeten bezeichnet, die im Sonnensystem auch die Gruppe der äußeren Planeten darstellen. In dieser Gruppe ist er der innerste und läuft in äußerer Nachbarschaft des Asteroidengürtels um die Sonne.

Er weist eine relativ starke Abplattung auf. Der scheinbare Winkeldurchmesser beträgt je nach Erdentfernung 32–48. In einer Wolkenschicht südlich des Äquators befindet sich der größte Wirbelsturm des Sonnensystems, der Große Rote Fleck (GRF), der schon vor 300 Jahren beobachtet werden konnte. Außerdem besitzt Jupiter ein kleines Ringsystem und 63 bekannte Monde, von denen die vier größten, die Galileischen Monde Ganymed, Kallisto, Europa und Io, auch mit kleinen Fernrohren wahrgenommen werden können. Auch die bis zu fünf Äquatorstreifen können mit einfachen Fernrohren beobachtet werden.

Als eines der hellsten Objekte des Nachthimmels ist er nach dem römischen Hauptgott Jupiter benannt. In Babylonien galt er wegen seines goldgelben Lichts als Königsstern (siehe auch Stern von Betlehem).

Sein astronomisches Symbol ist .

Inhaltsverzeichnis

Umlaufbahn und Rotation

Umlaufbahn

Jupiter läuft auf einer annähernd kreisförmigen Umlaufbahn mit einer Exzentrizität von 0,0489 um die Sonne. Sein sonnennächster Punkt, das Perihel, liegt bei 4,95 AE und sein sonnenfernster Punkt, das Aphel, bei 5,46 AE. Seine Umlaufbahn ist mit 1,305° leicht gegen die Ekliptik geneigt. Für einen Umlauf um die Sonne benötigt Jupiter 11 Jahre, 315 Tage und 3 Stunden.

Jupiter hat eine wichtige Funktion in unserem Sonnensystem. Da er schwerer ist als alle anderen Planeten zusammen, ist er eine wichtige Komponente des Massengleichgewichtes im Sonnensystem. Er stabilisiert durch seine Masse den Asteroidengürtel. Ohne Jupiter würde statistisch gesehen alle 100.000 Jahre ein Asteroid aus dem Asteroidengürtel die Erde treffen und Leben dadurch vermutlich unmöglich machen. Die Existenz eines jupiterähnlichen Planeten in einem Sonnensystem könnte darum Voraussetzung für Leben auf einem dem Stern näheren Planeten sein.[A 1]

Auf der Bahn des Jupiters befinden sich außerdem Trojaner, die Jupiter auf den Lagrange-Punkten L4 und L5 begleiten.

Rotation

Die Abplattung des Jupiters zeigt sich im Vergleich zum Umriss (rote Linie) einer Kugel. Aufnahme des Hubble Space Telescope.

Trotz seiner Größe ist Jupiter in unserem Sonnensystem der Planet, der sich am schnellsten dreht. Er vollendet eine Rotationsperiode in weniger als zehn Stunden, was auf Grund der Fliehkräfte eine Abflachung des Jupiters an den Polen und die Entstehung eines „Bauches“ am Äquator zur Folge hat. Jupiter rotiert auch nicht wie ein starrer Körper. Die Äquatorregionen benötigen für eine Rotation 9 h 50 min 30 s und die Polregionen 9 h 55 min 41 s. Die Äquatorregionen werden als System I und die Polregionen als System II bezeichnet. Seine Rotationsachse ist dabei nur sehr gering um 3,13° gegen seine Umlaufbahn um die Sonne geneigt. Jupiter hat somit im Gegensatz zu anderen Planeten keine ausgeprägten Jahreszeiten. Die Präzessionsperiode der Rotationsachse liegt Modellrechnungen zufolge in einer Größenordnung von 500.000 Jahren.[2]

Physikalische Eigenschaften

Jupiter ist der massereichste Planet in unserem Sonnensystem. Er besitzt 2,5-mal so viel Masse wie alle sieben anderen Planeten zusammen. Dadurch liegt bei ihm als einzigem Planeten unseres Sonnensystems der gemeinsame Schwerpunkt mit der Sonne außerhalb der Sonne, etwa 1,068 Sonnenradien vom Sonnenzentrum entfernt. Die Masse Jupiters entspricht 318 Erdmassen beziehungsweise dem 1048. Teil der Sonnenmasse.

Jupiter ist nicht nur der schwerste, sondern mit einem Durchmesser von etwa 143.000 Kilometern auch der größte Planet unseres Sonnensystems. Sein Durchmesser entspricht rund elf mal dem der Erde beziehungsweise einem Zehntel des Sonnendurchmessers. Er hat mit 1,326 g/cm³, wie alle Gasriesen, eine geringe mittlere Dichte.

Jupiter besitzt fast die Maximalausdehnung eines „kalten“, aus Wasserstoff bestehenden Körpers. „Kalt“ bedeutet in diesem Zusammenhang, dass in dem Himmelskörper kein Wasserstoff zu Helium fusioniert und ihn zu einem Stern aufheizt. Jupiter müsste mindestens etwa 70-mal schwerer sein, um den kleinstmöglichen Stern mit Kernfusion, einen roten Zwerg, zu bilden. Körper aus Wasserstoff mit mehr Masse als Jupiter besitzen auf Grund ihrer erhöhten Gravitation ein kleineres Volumen. Solche Objekte nennt man ab etwa 13 Jupitermassen Braune Zwerge. Die Übergänge zwischen Sternen, Braunen Zwergen und Planeten sind fließend.

Die Temperatur beträgt bei einem Druck der Gasschicht von 100 kPa (1 bar, dies wird bei Gasplaneten allgemein als „Oberfläche“ definiert) 165 K (−108 °C) und bei 10 kPa (0,1 bar) Druck 112 K (−161 °C).

Aufbau

Jupiter hat keine klar begrenzte Atmosphäre. Fast der ganze Planet besteht aus Gasen, und die Gashülle geht ohne Phasenübergang mit zunehmender Tiefe in einen flüssigen Zustand über, da sich der Druck über den kritischen Punkt der Atmosphärengase erhöht.

Obere Schichten

Jupiter-Animation von Voyager 1.

Hauptbestandteile des Außenbereichs sind Wasserstoff (89,8 ± 2 Vol-%) und Helium (10,2 ± 2 Vol-%) sowie in geringerer Menge Methan (0,3 ± 0,2 Vol-%) und Ammoniak (260 ± 40 Vol-ppm).[1] Des Weiteren wurden Spuren von chemischen Verbindungen der Elemente Sauerstoff, Kohlenstoff, Schwefel und vielen anderen Elementen gefunden, aber auch von Edelgasen wie z. B. vom Gas Neon. Der Außenbereich beinhaltet daher Spuren von z. B. Wasser, Schwefelwasserstoff sowie weiteren Oxiden und Sulfiden. Die äußersten Schichten beinhalten zudem Kristalle aus gefrorenem Ammoniak, welches in tiefer liegenden Schichten mit Schwefelwasserstoff auch zu Rauchwolken aus Ammoniumsulfid reagieren kann. Noch tiefer liegende, wärmere Schichten enthalten vermutlich auch Spuren von organischen Verbindungen. Insgesamt gleicht Jupiters Zusammensetzung sehr der Gasscheibe, aus der sich vor etwa 4,5 Milliarden Jahren die Sonne entwickelt hat. Es lassen sich Ähnlichkeiten im Aufbau zu Saturn erkennen, wobei Saturn einen geringeren Anteil an Helium hat. Die beiden anderen Gasriesen Uranus und Neptun besitzen aufgrund ihrer geringeren Schwerkraft wesentlich weniger Wasserstoff und Helium.

Innerer Aufbau

Schematischer Schnitt zur Darstellung des inneren Aufbaus.

Mit zunehmender Tiefe geht wegen des hohen Drucks der Wasserstoff vom gasförmigen zum flüssigen Aggregatzustand über. Es gibt dabei keinen Phasenübergang zwischen den Aggregatzuständen, da der Druck in den Tiefen des Planeten jenseits des kritischen Punktes ansteigt. Unter diesen Bedingungen ist die Unterscheidung zwischen Gas und Flüssigkeit nicht mehr möglich. Daher kann auch keine Oberfläche als Grenzfläche definiert werden. Unterhalb etwa 25 % des Jupiterradius geht der Wasserstoff bei einem Druck jenseits von 300 Millionen Erdatmosphären in eine metallische Form über. Es wird vermutet, dass Jupiter unterhalb dieser metallischen Wasserstoffschicht einen Gestein-Eis-Kern hat, der aus schweren Elementen besteht mit bis zu etwa 20 Erdmassen.

Wetter

Auffällig sind die hellen und dunklen äquatorparallelen Wolkenbänder und der Große Rote Fleck – ein riesiger ovaler Antizyklon, der in seiner Länge in Richtung der Rotation zwei Erddurchmesser groß ist. Er ist mit keiner festen Oberfläche verbunden, liegt aber sehr stabil zwischen zwei Wolkenbändern um etwa 22° südlicher Breite und wird bereits seit rund 300 Jahren mit nur leichten Veränderungen beobachtet. Erstmals wurde er 1664 von dem englischen Naturforscher Robert Hooke gesehen. Zum Vergleich: Auf der Erde lösen sich Windwirbel in der Atmosphäre üblicherweise innerhalb einiger Wochen wieder auf. Der Große Rote Fleck ist aufgrund seiner Größe bereits in einem Amateurteleskop sichtbar. Seine markante Farbe ist jedoch kein sehr tiefes, leuchtendes Rot, sondern schwankt im Lauf der Jahre um ein eher helles Orange. Für ein erfolgreiches Auffinden können sich Beobachter an der durch ihn bedingten Einbuchtung am Südrand des dunklen südlichen äquatorialen Gürtels orientieren; diese wird als Bucht des Großen Roten Flecks (Red Spot Hollow) bezeichnet. Welche chemischen Elemente für die rote Färbung verantwortlich sind, ist immer noch unbekannt.

Der Große Rote Fleck umkreist als größter Wirbelsturm des Sonnensystems ständig den Jupiter. Er wurde bereits vor 300 Jahren auf Zeichnungen festgehalten. Damals wurde er durch einfache Ferngläser beobachtet.

Wirbelstürme

Jupiter unterliegt nach neuen Forschungsergebnissen einem 70-jährigen Klimazyklus. In diesem Zeitraum kommt es zur Ausbildung etlicher Wirbelstürme – Zyklone und Antizyklone, die nach gewisser Zeit wieder zerfallen. Zudem verursacht das Abflauen der großen Stürme Temperaturunterschiede zwischen den Polen und dem Äquator von bis zu 10 °C, die sonst wegen der ständigen Gasvermischung durch die Stürme verhindert werden.

Bis zum Jahr 2011 sollten die meisten Wirbelstürme auf Jupiter vorübergehend verschwunden sein, allerdings dürfte der Große Rote Fleck diese Entwicklung aufgrund seiner großen Energie überleben. Die letzte Klimaveränderung dieser Art auf Jupiter konnte bereits 1939 beobachtet werden.

Neben dem auffälligen roten Fleck ist seit längerem auch eine Struktur mit der Bezeichnung weißes Oval (englisch oval BA) bekannt, deren Ausdehnung (etwa ein Erddurchmesser) allerdings geringer als die des roten Flecks ist. Das weiße Oval hatte sich ab 1998 aus drei seit den 1930er Jahren bekannten Stürmen entwickelt. Im Jahre 2006 wurde durch Aufnahmen des Hubble-Weltraumteleskops ein Farbwechsel hin zu Rot beobachtet, so dass möglicherweise in Zukunft dieser Struktur der Name Zweiter Roter Fleck oder Kleiner Roter Fleck gegeben wird, auf englisch red spot junior. Neuere Messungen ermittelten in seinem Inneren Windgeschwindigkeiten von bis zu 600 km/h.

Im Mai 2008 wurde ein dritter roter Fleck entdeckt, von dem zuerst angenommen wurde, dass er etwa im August mit dem Großen Roten Fleck zusammentreffen würde. Der neue rote Fleck ging aus einem bisher weißlichen, ovalförmigen Sturmgebiet hervor. Die Änderung der Farbe deutet darauf hin, dass die Wolken in größere Höhen steigen. In solch einer Höhe befindet sich auch die Wolkenobergrenze des Großen Roten Flecks.[3] Mitte Juli 2008 hat der größte Wirbelsturm des Jupiter, der Große Rote Fleck, den dritten roten Fleck verschlungen, wie Beobachtungen mit dem Weltraumteleskop Hubble zeigen.[4]

Der Große Rote Fleck, „red spot junior“ und der im Mai 2008 aufgetauchte dritte rote Fleck, aufgenommen vom Hubble-Teleskop.

Auf Gasplaneten wie Jupiter kommt es zu adiabatischen Kontraktionen des Gases. Durch die daraus resultierende Temperaturerhöhung steigt der Druck, bis der Planet sich im Gleichgewicht befindet. Dieser Prozess wird Kelvin-Helmholtz-Mechanismus genannt. Die so entstehende Wärme wird langsam in den Weltraum abgestrahlt. Deshalb schrumpft der Planet beständig. Jupiter bezieht aus dieser Kontraktion eine Leistung von etwa 400 Milliarden Watt, was ungefähr der Leistung entspricht, die er durch die absorbierte Sonneneinstrahlung erhält.

Magnetfeld

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Magnetosphäre des Jupiters.

Jupiter hat ein sehr ausgeprägtes Magnetfeld. Die Stärke des Feldes beträgt auf Höhe der Wolken etwa 1200 Mikrotesla. Es ist somit 20-mal so stark wie das Erdmagnetfeld (60 Mikrotesla) und enthält etwa die 25.000-fache Energie des Erdmagnetfeldes. Der magnetische Nordpol des Jupiters liegt in der Nähe seines geographischen Südpols. Die Achse des Nordpols ist um 11° in Relation zu seiner Rotationsachse geneigt. Die fiktive Achse zwischen dem magnetischen Nordpol und dem magnetischen Südpol geht nicht direkt durch das Zentrum des Planeten, sondern leicht daran vorbei, ähnlich wie es bei der Erde der Fall ist.

Die genaue Entstehung des Magnetfeldes ist bei Jupiter noch ungeklärt, jedoch gilt als gesichert, dass der metallische Wasserstoff sowie die schnelle Rotationsperiode Jupiters eine entscheidende Rolle spielten.

Auf der sonnenzugewandten Seite erstreckt sich das Magnetfeld etwa 6 Mio. Kilometer weit in das Weltall, während es auf der sonnenabgewandten Seite gut 700 Mio. Kilometer ins Weltall hinausragt, damit reicht es fast bis in die Saturnbahn. Der Grund für diese Asymmetrie ist der Sonnenwind, der eine Stoßfront bildet. Dadurch wird von der Sonne aus gesehen das Magnetfeld vor dem Planeten gestaucht und dahinter gedehnt. Die ständige Wechselwirkung mit dem Sonnenwind führt dazu, dass die genauen Ausmaße des Magnetfeldes stark schwanken können, daher sind die hier genannten Werte als ungefähre Richtwerte zu verstehen. Besonders stark können etwaige Fluktuationen auf der sonnenzugewandten Seite sein. Bei schwachem Sonnenwind kann das Magnetfeld dort bis zu 16 Mio. Kilometer weit ins All reichen. Die Fluktuationen des Magnetfeldes wurden unter anderem von den beiden Sonden Voyager 1 und 2 untersucht.

Den vom Magnetfeld eingenommenen Raum nennt man Magnetosphäre. Die Magnetosphäre Jupiters ist derart groß, dass sie am irdischen Nachthimmel die dreifache Fläche der Sonne oder des Mondes einnähme, sofern sie leuchten würde. Damit ist sie, von der Magnetosphäre der Sonne abgesehen, das mit Abstand größte Objekt in unserem Sonnensystem.

Das starke Magnetfeld fängt beständig geladene Teilchen ein, so dass sich Ringe und Scheiben aus geladenen Teilchen um Jupiter bilden. Diese geladenen Teilchen können zum Beispiel aus dem Sonnenwind stammen. Ein vergleichbarer Effekt findet sich auf der Erde in Form des Van-Allen-Gürtels. Eine weitere Quelle für geladene Teilchen sind die Monde des Jupiters. So findet man beispielsweise einen Ring aus geladenen Schwefelatomen um Io herum, während sich um Europa herum ein Torus aus Wassermolekülen gebildet hat.

Durch Fluktuationen im Magnetfeld entsteht ständig Strahlung, die von Jupiter ausgeht. Diese so genannte Synchrotronstrahlung kann im Dezimeterwellenbereich gemessen werden und führt auch zur Wasserverdampfung auf Europas Oberfläche.

Das Magnetfeld lässt sich grob in drei Teile einteilen: Der innere Bereich ist ringförmig und erstreckt sich etwa 20 Jupiterradien weit. Innerhalb dieses Teiles lassen sich unterschiedliche Regionen unterscheiden, die durch verschiedene Elektronen- und Protonenkonzentrationen definiert sind. Der mittlere Teil des Magnetfeldes erstreckt sich von 20 bis etwa 50 Jupiterradien. Dieser Teil ist durch schnelle Rotation um Jupiter und damit hohe Fliehkräfte scheibenförmig abgeplattet. Die äußere Region des Magnetfeldes ist vor allem durch die Wechselwirkung des Magnetfeldes mit dem Sonnenwind geprägt, und ihre Form damit abhängig von dessen Stärke.

Ringsystem

Ringe des Jupiters.

Jupiter hat ein sehr schwach ausgeprägtes Ringsystem, das schon seit der Pioneer-11-Mission 1974 vermutet wurde und 1979 von Voyager 1 erstmals fotografiert werden konnte. Als die Sonde am 5. März 1979 in den Jupiterschatten eintauchte, waren die Ringe im Gegenlicht zu erkennen.

Lange Zeit blieb die Herkunft der Ringe unbekannt, und eine erdgebundene Beobachtung erwies sich als außerordentlich schwierig, da die Ringe aus Staubkörnchen bestehen, die zum Großteil nicht größer sind als die Partikel des Rauches einer Zigarette. Hinzu kommt, dass die Staubteilchen nahezu schwarz und daher kaum sichtbar sind: Sie haben eine Albedo von lediglich 5 %, verschlucken also 95 % des auftreffenden, dort ohnehin schon schwachen Sonnenlichts.

Ein weiterer Grund für die geringen Ausmaße der Ringe ist die Tatsache, dass sich die Ringe langsam spiralförmig auf Jupiter zu bewegen und in ferner Zukunft schließlich von ihm aufgesaugt werden. Die spiralförmige Rotation hat unterschiedliche Ursachen. Zum einen bewirkt das starke Magnetfeld des Jupiters ein elektrisches Aufladen der Staubteilchen. Diese stoßen mit anderen geladenen Teilchen zusammen, die Jupiter zum Beispiel aus dem Sonnenwind einfängt, was schließlich zu einer Abbremsung der Teilchen führt. Ein zweiter Effekt, der ebenfalls eine Abbremsung der Staubpartikel bewirkt, ist die Absorption und anschließende Remission von Licht. Dabei verlieren die Staubpartikel Bahndrehimpuls. Diesen Effekt nennt man Poynting-Robertson-Effekt. Beide Effekte zusammen bewirken, dass der Staub innerhalb eines Zeitraumes von etwa 100.000 Jahren aus den Ringen verschwindet.

Hauptring fotografiert am 9. November 1996 von Galileo.

Der Ursprung der Ringe konnte erst durch die Galileo-Mission geklärt werden. Der feine Staub stammt wahrscheinlich von den kleinen felsigen Monden des Jupiters. Die Monde werden ständig von kleinen Meteoriten bombardiert. Durch die geringe Schwerkraft der Monde wird ein Großteil des Auswurfs in die Jupiterumlaufbahn geschleudert und füllt damit die Ringe ständig wieder auf.

Der Hauptring (Main Ring) zum Beispiel besteht aus dem Staub der Monde Adrastea und Metis. Zwei weitere schwächere Ringe (Gossamer-Ringe) schließen sich nach außen hin an. Das Material für diese Ringe stammt hauptsächlich von Thebe und Amalthea. Außerdem konnte noch ein extrem dünner Ring in einer äußeren Umlaufbahn entdeckt werden, der einen Durchmesser von über 640.000 km hat und dessen Teilchen sich bis zu 20° außerhalb der Äquatorebene des Jupiters bewegen. Dieser Ring umkreist Jupiter in gegenläufiger Richtung. Der Ursprung dieses Ringes ist noch nicht geklärt. Es wird jedoch vermutet, dass er sich aus interplanetarem Staub zusammensetzt.

Innerhalb des Hauptringes befindet sich ein Halo aus Staubkörnern, der sich in einem Gebiet von 92.000 bis 122.500 km, gemessen vom Zentrum Jupiters, erstreckt. Der Hauptring reicht von oberhalb der Halogrenze ab 130.000 km bis etwa an die Umlaufbahn von Adrastea heran. Oberhalb der Umlaufbahn von Metis nimmt die Stärke des Hauptrings merklich ab. Die Dicke des Hauptrings ist geringer als 30 km.

Der von Amalthea gespeiste innere Gossamer-Ring reicht von der äußeren Grenze des Hauptrings bis zu Amaltheas Umlaufbahn bei etwa 181.000 km vom Jupiterzentrum. Der äußere Gossamer-Ring reicht von 181.000 km bis etwa 221.000 km und liegt damit zwischen den Umlaufbahnen von Amalthea und Thebe.

Monde

Die vier Galileischen Monde maßstabsgetreu vor dem Großen Roten Fleck (von oben: Io, Europa, Ganymed und Kallisto).

Übersicht aller Jupitermonde: Liste der Jupitermonde

Jupiter besitzt 63 bekannte Monde (Stand: November 2005). Sie können in mehrere Gruppen unterteilt werden:

Die Galileischen Monde Io, Europa, Ganymed und Kallisto mit Durchmessern zwischen 3122 und 5268 km (Erddurchmesser 12.740 km) wurden 1610 unabhängig voneinander durch Galileo Galilei und Simon Marius entdeckt. Alle anderen Monde, mit Ausnahme der 1892 entdeckten Amalthea, wurden erst im 20. oder 21. Jahrhundert gefunden. Die Galileischen Monde sind die größten Jupitermonde und haben planetennahe, nur wenig geneigte Bahnen.

  • Io hat einen Durchmesser von 3160 km und umkreist Jupiter in einem Abstand von 421.600 km. Sie besteht aus einem Eisenkern und einem Mantel. Io besitzt eine sehr dünne Atmosphäre, hauptsächlich bestehend aus Schwefeldioxid. Da in ihrem Inneren geologische Prozesse ablaufen, befinden sich auf ihrer Oberfläche zahlreiche Vulkane.
  • Europa besitzt einen Eisenkern und einen Steinmantel, über dem ein wahrscheinlich 100 km tiefer Ozean aus Wasser liegt, dessen Oberfläche 10 bis 20 km zu einer Eiskruste gefroren ist. Ihr Durchmesser beträgt 3138 km, ihre Entfernung zum Jupiter 670.900 km.
  • Ganymed befindet sich in einer Entfernung von 1.070.000 km. Sein Durchmesser liegt bei 5268 km. Damit ist er der größte Mond im Sonnensystem. Er besteht aus einem Eisenkern, einem Felsmantel und einem Eismantel. Außerdem besitzt er ein eigenes Magnetfeld.
  • Kallisto hat einen Durchmesser von 4806 km und einen Abstand von 1.883.000 km zu Jupiter. Sie besteht aus einem Eisen-Stein-Gemisch und einer Eiskruste. Forscher fanden auf ihr Anzeichen für Kohlenstoff- und Stickstoffverbindungen, die zu den Grundvoraussetzungen für Leben gehören. Auch im Innern von Kallisto gibt es wahrscheinlich Schichten aus flüssigem Wasser.

Neben den Galileischen Monden gibt es vier weitere Monde auf planetennahen und nur wenig geneigten Bahnen: Metis, Adrastea, Amalthea und Thebe. Diese sind aber mit Durchmessern von 20 bis 131 km wesentlich kleiner als die Galileischen Monde. Man vermutet, dass diese acht inneren Monde gleichzeitig mit dem Jupiter entstanden sind.

Die restlichen Monde sind kleine bis kleinste Objekte mit Radien zwischen 1 und 85 km und wurden vermutlich von Jupiter eingefangen. Sie tragen teilweise noch Zahlencodes als vorläufige Namen, bis sie von der Internationalen Astronomischen Union (IAU) endgültig benannt sind.

Vermutlich während der 1960er-Jahre geriet der Komet Shoemaker-Levy 9 unter die Gravitationskräfte des Planeten und wurde in eine stark elliptische Umlaufbahn (Exzentrizität > 0,99, Apojovium bis zu 0,33 AE) gezwungen. Im Juli 1992 passierte der Quasisatellit Jupiter innerhalb der Roche-Grenze und zerbrach in 21 Fragmente, die zwei Jahre später auf den Planeten stürzten.

Beobachtung

Hauptartikel: Jupiterpositionen bis 2017

Jupiter ist nachts von der Erde aus mit bloßem Auge zu erkennen. An seiner maximalen Helligkeit gemessen ist Jupiter – nach Sonne, Mond und Venus – das vierthellste Objekt am Himmel, das bei entsprechender Planetenkonstellation sogar heller leuchten kann als die Venus. Daher war er bereits in der Antike bekannt. Eine der ersten Personen, die Jupiter mit einem Fernrohr beobachteten, war 1610 Galileo Galilei. Dabei entdeckte er die vier größten Jupitermonde Ganymed, Kallisto, Io und Europa. Diese vier Monde werden daher heute noch als Galileische Monde bezeichnet.

Erforschung mit Raumsonden

Jupiter wurde bereits von mehreren Raumsonden besucht, wobei einige Missionen den Planeten als eine Art Sprungbrett nutzten, um mit Hilfe eines Swing-by-Manövers am Jupiter zu ihren eigentlichen Zielen zu gelangen.

Pioneer

Jupiter, aufgenommen von einer der Pioneer-Sonden.

Pioneer 10 war die erste Raumsonde, die am 3. Dezember 1973 in einer Entfernung von etwa 130.000 km am Jupiter vorbeiflog. Exakt ein Jahr später, am 3. Dezember 1974, folgte Pioneer 11, die bis auf etwa 43.000 km an die Wolkenobergrenze des Planeten herankam. Die beiden Pioneer-Raumsonden lieferten wichtige Daten über die Magnetosphäre des Jupiters und fertigten die ersten, noch relativ niedrig aufgelösten Nahaufnahmen des Planeten an.

Voyager

Voyager 1 flog im März 1979 durch das Jupiter-System, gefolgt von Voyager 2 im Juli 1979. Die Voyager-Raumsonden lieferten neue Erkenntnisse über die Galileischen Monde, konnten erstmalig vulkanische Aktivitäten auf Io nachweisen und entdeckten die Ringe des Jupiters. Auch fertigten sie die ersten Nahaufnahmen der Planetenatmosphäre an.

Ulysses

Im Februar 1992 flog die Sonnensonde Ulysses in einer Entfernung von etwa 450.000 km (6,3 Jupiterradien) am Jupiter vorbei. Dabei wurde die Sonde aus der Ekliptikebene geschleudert und trat in eine polare Sonnenumlaufbahn ein. Ulysses studierte die Magnetosphäre des Jupiters, konnte jedoch keine Bilder des Planeten liefern, da keine Kamera an Bord war.

Galileo

Galileo wird für den Start vorbereitet.

Die einzige Raumsonde, die bisher Jupiter umkreiste, war die NASA-Sonde Galileo, die am 7. Dezember 1995 nach etwas mehr als sechs Jahren Flugzeit in einen Orbit um den Planeten einschwenkte. Bereits auf dem Weg zum Jupiter konnte Galileo 1994 beobachten, wie der Komet Shoemaker-Levy 9 auf dem von der Sonde noch 238 Mio. Kilometer entfernten Jupiter einschlug und Explosionen von der Größe der Erde in der Atmosphäre des Planeten auslöste. Trotz der Distanz konnte Galileo Bilder von den direkten Einschlägen aufnehmen, die auf der erdabgewandten Seite stattfanden.

Galileo umkreiste Jupiter über sieben Jahre lang und führte mehrfach Vorbeiflüge an den Galileischen Monden aus. Unter anderem beobachtete Galileo Vulkanausbrüche auf Io, lieferte Hinweise auf einen verborgenen Ozean auf Europa und untersuchte die Wolkenbewegungen in Jupiters Atmosphäre. Allerdings konnte aufgrund des Ausfalls der primären Antenne der Raumsonde nur ein Bruchteil der ursprünglich geplanten Menge wissenschaftlicher Daten zur Erde übertragen werden.

Künstlerische Darstellung des Eintritts der Atmosphärenkapsel.

Neben dem Orbiter umfasste die Mission von Galileo auch das Aussetzen einer Eintrittskapsel, die in Jupiters Atmosphäre eindringen und verschiedene Daten über Temperatur, Druck, Windgeschwindigkeit und chemische Zusammensetzung liefern sollte. In 82 Mio. Kilometern Entfernung zum Jupiter trennte sich im Juli 1995 die Kapsel von der Muttersonde. Am 7. Dezember 1995 tauchte die Kapsel mit einer Geschwindigkeit von 170.000 km/h in einem Winkel von ca. 9° in die Atmosphäre des Jupiter ein, wurde mit Hilfe eines Hitzeschildes abgebremst und entfaltete einige Minuten später einen Fallschirm. Anschließend lieferte die Kapsel 57,6 Minuten lang Daten, während sie sich am Fallschirm hängend etwa 160 km tief in die Atmosphäre fortbewegte, bevor sie vom Außendruck zerstört wurde. In den letzten Sekunden registrierte die Sonde einen Druck von 22 bar und eine Temperatur von +152 °C.

Die primäre Mission bei Jupiter war ursprünglich nur für 23 Monate bis Dezember 1997 geplant, wurde aber dann insgesamt dreimal verlängert, da Geräte und Antrieb noch funktionsfähig waren und gute Ergebnisse erwarten ließen. Am 21. September 2003 wurde Galileo schließlich in die Jupiteratmosphäre gelenkt, da die Sonde wegen Treibstoffmangels und Ausfällen der Elektronik, bedingt durch die von der Sonde während der letzten Jahre erhaltene hohe Strahlungsdosis, später nicht mehr lenkbar gewesen wäre. Es bestand die Gefahr, dass Galileo auf den Jupitermond Europa stürzen und ihn mit terrestrischen Bakterien verunreinigen könnte. Dies hätte künftige Missionen zur Erforschung von Lebensspuren auf den Jupitermonden erschwert.

Cassini

Projektion der Südhalbkugel des Jupiters mithilfe von Cassini.

Die Raumsonde Cassini-Huygens, die sich auf dem Weg zum Saturn befand, passierte Ende 2000/Anfang 2001 das Jupiter-System und machte dabei zahlreiche Messungen und Aufnahmen. Zeitgleich operierte Galileo im Jupiter-System, so dass es zum ersten Mal möglich war, den Planeten und seine Magnetosphäre gleichzeitig mit zwei Raumsonden zu untersuchen. Cassini flog am 30. Dezember 2000 in einer Entfernung von etwa 10 Mio. Kilometern am Jupiter vorbei und lieferte unter anderem einige der höchstaufgelösten Globalaufnahmen des Planeten.

Aktuelle und künftige Missionen

Die am 19. Januar 2006 gestartete Raumsonde New Horizons, die zum Pluto unterwegs ist, sammelte bei ihrem Vorbeiflug am Jupiter im Februar und März 2007 Daten über den Riesenplaneten. Die Raumsonde sollte Wolkenbewegungen auf Jupiter beobachten, die Magnetosphäre des Planeten studieren sowie nach Polarlichtern und Blitzen in Jupiters Atmosphäre Ausschau halten. Über die vier großen Galileischen Monde konnten allerdings nur wenige wissenschaftliche Daten gewonnen werden, da die Sonde diese in großer Entfernung passierte. New Horizons erreichte die größte Annäherung an Jupiter am 28. Februar 2007 bei etwa 32 Jupiterradien Entfernung. Dies ist ungefähr ein Drittel des Abstands, in dem Cassini-Huygens den Jupiter passierte.

Computersimulation der Raumsonde Juno vor dem Jupiter.

Für das Jahr 2011 wird von der NASA der Start des Orbiters Juno projektiert, er soll 5,2 Jahre nach dem Start in einen polaren Orbit mit einer Periapsis von 5000 Kilometern und einer Umlaufzeit von elf Tagen eintreten. Die Primärmission der Sonde soll etwa ein Jahr lang dauern und 32 solcher Orbits beinhalten. Juno soll der Erforschung des Magnetfelds sowie der Atmosphäre dienen, die Galileischen Monde wird die Sonde höchstens aus einer größeren Entfernung beobachten können. Eine Besonderheit der Sonde ist ihre Energieversorgung: Als erste Mission zu einem der äußeren Planeten wird sie vollständig durch Solarenergie betrieben werden.

Nach der Entdeckung eines Wasserozeans auf dem Mond Europa stieg das Interesse der Planetenforscher am detaillierten Studium der Eismonde des Jupiters. Für diesen Zweck wurde bei der NASA die Mission Jupiter Icy Moons Orbiter (JIMO) entworfen. Geplant war eine 2017 startende große Raumsonde, die einen Atomreaktor als Energiequelle für ihre Ionentriebwerke und Instrumente nutzen sollte. JIMO sollte die drei großen Eismonde des Jupiters – Kallisto, Ganymed und Europa – nacheinander umkreisen und mit Hilfe eines starken Radars und vieler anderer Instrumente untersuchen. Im Jahr 2005 wurde die Finanzierung von JIMO aufgrund seiner Komplexität und vieler technischer Schwierigkeiten gestoppt.

Für das Jahr 2020 haben NASA und ESA die gemeinsame Europa Jupiter System Mission/Laplace vorgeschlagen, welche mindestens zwei Orbiter vorsieht, welche jeweils in einen Orbit um Europa und Ganymed eintreten sollen und das gesamte Jupitersystem mit einem revolutionären Tiefgang erforschen sollen.[5]

Allegorische Darstellung Jupiters als Herrscher der Tierkreiszeichen Fische und Schütze; von Sebald Beham, 16. Jahrhundert.

Kulturgeschichte

Durch seine große Helligkeit war der Planet Jupiter schon im Altertum bekannt und wurde beispielsweise von den Babyloniern Gad genannt. Der Name „Jupiter“ geht auf das proto-indoeuropäisch *dyeu ph2ter zurück, was „Gott-Vater“ bedeutet.[6] In der Astrologie steht Jupiter unter anderem für Expansion, Glück, Religion und Philosophie. Jupiter wird dem Element Feuer, den Tierkreiszeichen Schütze und Fische und dem 9. Haus zugeordnet.

Wegen der Zuordnung Jupiters zu Glück und Heiterkeit wurde aus dem lateinischen Wort iovialis („zu Jupiter gehörend“) das Wort Jovialität abgeleitet.[7]

Siehe auch


Literatur

  • Guillaume Cannat, Didier Jamet: Jupiter und Saturn - die schönsten Bilder der Raumsonden Galileo und Cassini. Delius Klasing, Bielefeld 2007, ISBN 978-3-7688-1877-3
  • John W. McAnally: Jupiter and how to observe it. Springer, London 2008, ISBN 978-1-85233-750-6
  • A. J. Dessler: Physics of the Jovian magnetosphere. Cambridge Univ. Press, Cambridge 1983, ISBN 0-521-24558-3


Weblinks

Anmerkungen

  1. Diese Ansicht wird jedoch nicht von allen Astronomen geteilt. Siehe z. B.: Jupiter: Friend or Foe?

Einzelnachweise

  1. a b c NASA Jupiter Fact Sheet.
  2. Ignacio Mosqueira, Paul Estrada: Jupiter’s Obliquity and a Long-lived Circumplanetary Disk, astro-ph/0506147v1, arxiv.org, 7. Juni 2005
  3. Arnold Barmettler: Neuer Roter Fleck auf Jupiter. astro!nfo. Abgerufen am 27. Mai 2008. (Deutsch)
  4. Großer Roter Fleck frisst Wirbelsturm. Astronomie heute. Abgerufen am 17. Juli 2008. (Deutsch)
  5. http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=44035#
  6. Douglas Harper: Jupiter. Online Etymology Dictionary, November 2001. Abgerufen am 23. Februar 2007.
  7. Friedrich Kluge, Elmar Seebold: Etymologisches Wörterbuch der deutschen Sprache, 24. Auflage, de Gruyter, Berlin 2002


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Großer Roter Fleck — Großer Roter Fleck,   eine bereits im 17. Jahrhundert beobachtete Erscheinung in der Atmosphäre des Planeten Jupiter. Der Große Rote Fleck stellt einen langlebigen atmosphärischen Wirbel in der südlichen tropischen Zone des Jupiter mit dem… …   Universal-Lexikon

  • Jupiter: Der Riese mit rotem Fleck —   Jupiter ist der größte Planet unseres Sonnensystems, er besitzt so viel Masse, dass er die Sonne zu langsamen, aber messbaren Schlingerbewegungen um den gemeinsamen Schwerpunkt zwingt. Er strahlt am Erdhimmel so hell, dass er mit Ausnahme der… …   Universal-Lexikon

  • Roter Apollo — der a. rubidus Gruppe auf einer Distelblüte (Südtirol) Systematik Ordnung: Schmetterlinge (Lepidoptera) …   Deutsch Wikipedia

  • Großer Hund — Sternbild Großer Hund …   Deutsch Wikipedia

  • Planet Jupiter — Jupiter   …   Deutsch Wikipedia

  • System II — Jupiter   …   Deutsch Wikipedia

  • Wirbelstürme auf dem Planeten Jupiter — Jupiter   …   Deutsch Wikipedia

  • — Jupiter   …   Deutsch Wikipedia

  • Jupiter (Planet) — Jupiter   …   Deutsch Wikipedia

  • Elektrische Entladung — (hierzu Tafel »Elektrische Entladungen«), die Zerstörung aufgespeicherter elektrischer Energie (das Verschwinden eines elektrischen Spannungszustandes) durch Umwandlung in andre Energieformen (Wärme, Strahlung) in Isolatoren. Ladet man einen… …   Meyers Großes Konversations-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”