Homunkulus-Nebel

Homunkulus-Nebel

Datenbanklinks zu Eta Carinae

Stern
Eta Carinae (η Car)
Die Umgebung von eta Carinae,
der Carinanebel, im infraroten Licht
Beobachtungsdaten
Epoche: J2000.0
Sternbild Kiel des Schiffs
Rektaszension 10h 45m 3,6s
Deklination -59° 41′ 4,3″
Scheinbare Helligkeit +6,21 (−0,8 – +7,9)m 
Typisierung
Spektralklasse pec. 
U-B Farbindex +0,61 
B-V Farbindex −0,45 
Astrometrie
Radialgeschwindigkeit −25,0 km/s
Entfernung  7.000 – 10.000 Lj
(2.000 – 3.000 pc)
Physikalische Eigenschaften
Masse 100 – 120 M 
Radius 80 – 180 R 
Leuchtkraft 5.000.000 L 
Oberflächentemperatur 36.000 – 40.000 K 
Alter < 3 Mio a 
Andere Bezeichnungen
und Katalogeinträge
Bright-Star-Katalog HR 4210
Henry-Draper-Katalog HD 93308
SAO-Katalog SAO 238429[1]
Tycho-Katalog TYC 8626-02809-1[2]

η Carinae oder eta Carinae ist ein veränderlicher, sehr massereicher Stern von 100 bis 150 Sonnenmassen, der mit etwa der vier- bis fünfmillionenfachen Leuchtkraft der Sonne strahlt. Seinen Namen trägt er, da er in dem südlichen Sternbild Carina, dem Kiel des Schiffs, liegt. Der Stern liegt in einer Entfernung von etwa 7.000 bis 10.000 Lichtjahren, innerhalb des offenen Sternhaufens Tr 16, der wiederum in einen riesigen Nebelkomplex eingebettet ist, den Carinanebel NGC 3372. Er gehört zu den Hyperriesen und den leuchtkräftigen blauen Veränderlichen.

Inhaltsverzeichnis

Auswirkung der Masse auf den Lebenszyklus

η Carinae ist einer der massereichsten Sterne der Milchstraße.

Die Kernfusion verbraucht in solchen Sternen aufgrund des durch die Masse erzeugten hohen inneren Druckes und der dadurch bedingten hohen Temperatur den vorhandenen Wasserstoff (und im Verlauf ihrer weiteren Entwicklung auch schwerere Elemente) mit einer wesentlich höheren Rate als in der Sonne, wobei enorme Energiemengen in Form von Strahlung freigesetzt werden. Das liegt daran, dass ein Stern eine mit steigender Masse exponentiell anwachsende Energiemenge aufbringen muss, um dem nach innen gerichteten Druck der eigenen Masse entgegenzuwirken und so das hydrostatische Gleichgewicht aufrechtzuerhalten.

Die hohe Fusionsrate führt dazu, dass ihr Kernbrennstoff in verhältnismäßig kurzer Zeit, nämlich innerhalb von wenigen Millionen Jahren, verbraucht sein wird. Diese Sterne werden dann in einer Supernova oder einer (bisher hypothetischen) Hypernova explodieren und höchstwahrscheinlich als schwarzes Loch enden. Die Sonne hat zum Vergleich eine zu erwartende Lebensdauer von 10 Milliarden Jahren.

Der Stern η Carinae gehört zu einer besonderen Klasse von instabilen blauen Riesensternen, die im Englischen als Luminous Blue Variables (LBV), also Leuchtkräftige Blaue Veränderliche bezeichnet werden. Es wird angenommen, dass alle Sterne mit einer Anfangsmasse von mehr als etwa 20 Sonnenmassen das LBV-Stadium durchlaufen, allerdings nur einige zehntausend Jahre dort verweilen. Es wurden erst sechs LBVs in der Milchstraße entdeckt, einige weitere sind in den Nachbargalaxien der lokalen Gruppe bekannt.

Ausbrüche

Bemerkenswert ist η Carinae wegen seiner Ausbrüche und der dadurch sich ändernden Helligkeit. Bei seiner ersten Katalogisierung durch Edmond Halley im Jahr 1677 war er ein Stern 4. Größe, steigerte jedoch seine Helligkeit und wurde 1730 als einer der hellsten Sterne im Sternbild Kiel des Schiffs wahrgenommen. Bis 1782 sank er wieder auf seine vormalige Helligkeit zurück, und erhöhte sie dann ab 1820 allmählich wieder. 1827 war sie bereits zehnmal so hoch, entsprechend 2,5 Größenklassen, und zwischen 1837 und 1856 kam es zu einem gewaltigen Ausbruch, der Großen Eruption, bei dem er schließlich gegen 1843 −0,8 Magnituden erreichte. Der Ausbruch hatte das Ausmaß einer Supernova und machte η Carinae trotz seiner Entfernung innerhalb kürzester Zeit zum zweithellsten Stern neben Sirius. Er verblasste in den Folgejahren zusehends. Von 1900 bis 1940 war er mit 7 bis 8 Magnituden nur noch im Teleskop oder Prismenfernglas sichtbar. 1940 wurde er dann allmählich wieder heller und auch wieder mit bloßem Auge sichtbar. 2002 besaß er eine Helligkeit von 5 bis 6 Magnituden, nachdem er sie von 1998 bis 1999 in 18 Monaten verdoppelt hatte.

Homunkulusnebel

Hubble-Aufnahme des Homunkulus-Nebels

η Carinae ist von einem sich ausbreitenden bipolaren Nebel umgeben, der wegen seines Erscheinungsbildes auf Fotoplatten auch Homunkulusnebel genannt wird. Der Nebel hat die Gestalt zweier entgegengesetzter Kegel, deren Spitzen in η Carinae ihren Ursprung haben, und misst bei einer scheinbaren Größe von 18" von Ende zu Ende etwas mehr als 0,5 Lichtjahre. Durch ihre Ausbreitungsgeschwindigkeit von bis zu 700 km/s, die mit Hilfe verschiedener Aufnahmen von 1945 bis 1995 aus ihrer Eigenbewegung abgeschätzt wurde, lässt sich die Wolke auf den Ausbruch in den 40er Jahren des 19. Jahrhunderts zurückführen; sie ist vermutlich mitverantwortlich für den damaligen Helligkeitsabfall, da sie den Stern verdeckt und den Großteil seines Lichts verschluckt. Bereits auf Aufnahmen, die im Abstand eines Jahres gemacht werden, lassen sich sichtbare Veränderungen an ihrer Größe ausmachen.

Die Kegel sind in Richtung der Rotationsachse des Sterns ausgerichtet. In Richtung der beiden Kegel, also an den Rotationspolen, stößt der Stern auch weiterhin enorme Mengen von Materie aus. Von der Erde aus wird η Carinae genau längs durch eine der Kegelwände gesehen. Dadurch wird das Licht um einen Faktor 100, etwa 5 Magnituden, im Vergleich zum Licht des Nebels abgeschwächt. Andere LBV haben ebenfalls derartige bipolare Nebel, durch den wesentlich höheren Kontrast erscheinen sie aber weniger prächtig auf Bildern.

Äquatoriale Scheibe

Senkrecht zur Ausbreitungsrichtung der kegelförmigen Wolken, in der so genannten äquatorialen Ebene, befindet sich eine relativ flache Scheibe, die ebenfalls aus fortgeschleudertem Material besteht. Die Geschwindigkeitsabschätzungen für sie ergeben eine höhere Geschwindigkeit als die der bipolaren Wolke und zeigen, dass sie viel später als diese ausgestoßen worden sein muss, in den 1890er Jahren. Da η Carinae nach seinem großen Ausbruch in den 1840ern sehr genau beobachtet wurde, konnte in den Aufzeichnungen seiner Helligkeitskurve in diesem Zeitraum auch ein kurzzeitiger Anstieg gefunden werden.

Bei bipolaren Wolken um andere, weitaus weniger schwere Sterne (siehe planetarischer Nebel) hatte man eine dichte äquatoriale Scheibe angenommen, die das Auswurfmaterial nur an den beiden Polen des Sterns ungehindert austreten lässt. Da bei η Carinae nun auch in der Ebene der äquatorialen Scheibe selbst Material mit hoher Geschwindigkeit austritt, ist man sich nicht sicher, welche Mechanismen hier tatsächlich wirken.

Wolkenmaterial und Energiefreisetzung

Chandra-Aufnahme des Horse-Shoe (Hufeisen)-Nebels im Röntgenbereich

Das Material von Wolke und Scheibe besteht aus Gas mit einem hohen Anteil an Stickstoff und Staub. Es wird durch den Stern erhitzt, so dass in der Gaswolke viele chemische Verbindungen entstehen können (Kosmochemie). Infolgedessen strahlt der Homunkulusnebel zudem im Infrarotbereich und ist eines der hellsten Infrarotobjekte der Milchstraße überhaupt. Da die Infrarotstrahlung im Gegensatz zum sichtbaren Licht in der Lage ist, den Staub zu durchdringen, ist es möglich, in diesem Wellenlängenbereich auch die größtenteils verdeckte, von uns abgewandte Wolkenhälfte zu beobachten. Dadurch konnte die Masse der beiden Wolken auf je etwa eine und die der äquatorialen Scheibe auf etwa eine halbe Sonnenmasse abgeschätzt werden. Die Existenz von Staub im Auswurfmaterial des Sterns wird darauf zurückgeführt, dass es sich mit zunehmender Entfernung abkühlte und so die Bildung von Staubteilchen zuließ.

Aus Masse und Ausbreitungsgeschwindigkeit der bipolaren Wolken wurde deren kinetische Energie errechnet, die Aufschluss über das Ausmaß der Eruptionen gibt. Demnach entspricht sie der Energiemenge, die unsere Sonne in 200 Millionen Jahren freisetzt und liegt damit in der Größenordnung von 2·1042 J. Für die äquatoriale Scheibe ergibt sich etwa der halbe Wert, da sie zwar eine höhere Ausbreitungsgeschwindigkeit besitzt, aber weniger Masse enthält.

Ältere Ausbrüche

Etwas entfernt vom Homunkulusnebel befindet sich älteres Auswurfmaterial, das möglicherweise bei einem ähnlichen Ausbruch im 15. Jahrhundert fortgeschleudert wurde. Aufnahmen des Röntgen-Satelliten Chandra von 1999 lassen außerdem einen hufeisenförmigen Ring mit einem Durchmesser von etwa 2 Lichtjahren erkennen, von dem auf einen weiteren großen Ausbruch vor mehr als tausend Jahren geschlossen wird. Im Röntgenbereich zeigt sich zudem, dass das Gas in unmittelbarer Nähe des Zentralsterns eine Temperatur von etwa 60 Millionen Kelvin aufweist und im Außenbereich des Rings, wo das Gas mit der interstellaren Materie zusammenstößt und abgebremst wird, etwa 3 Millionen Kelvin.

Die Ursache für derartige Ausbrüche wird noch nicht verstanden. Eine wahrscheinliche Annahme ist, dass sie durch aufgestauten Strahlungsdruck der enormen Leuchtkraft hervorgerufen werden, d. h., dass der Druck der nach außen gerichteten Strahlung irgendwann die nach innen gerichtete Gravitation überwiegt, wodurch das hydrostatische Gleichgewicht kurzzeitig zusammenbricht und der Stern explosionsartig riesige Mengen von Materie seiner äußeren Hüllen abstößt.

Sie zeigen jedenfalls, dass der Stern höchst instabil ist und am Ende seines Lebenszyklus angelangt ist. Man vermutet, dass er mindestens einmal in tausend Jahren einen größeren Ausbruch durchläuft und dass er wohl innerhalb der nächsten 100.000 Jahre als Supernova explodieren wird. Dies macht ihn zu einem hochinteressanten Forschungsobjekt, da sich an ihm die letzten Stadien der Sternentwicklung und deren Übergänge beobachten lassen.

Strahlungsschwankungen

Die Beobachtungen der letzten Jahre haben ergeben, dass die Helligkeit des Sterns kontinuierlich steigt. Dies muss aber nicht unbedingt bedeuten, dass sich die Leuchtkraft des Sternes selbst erhöht; auch eine Abnahme des absorbierenden Materials in der unmittelbaren Umgebung kann die Ursache des Anstiegs sein. Der Steigerung überlagert sind mehrere periodische Schwankungen:

  • Innerhalb von 5,54 Jahren steigert sich die ausgesendete Röntgenstrahlung allmählich. Gegen Ende wächst sie dramatisch an und sinkt dann schlagartig um den Faktor 100 auf ein dreimonatiges Minimum ab, bis ein neuer Zyklus beginnt.
  • Daneben gibt es eine 85,1-tägige Schwankung, bei der kurzzeitige Strahlungsschübe auftreten. Dies könnte durch eine Pulsation des Sterns hervorgerufen werden, d. h. durch periodisches Ausdehnen und Schrumpfen der Sternhüllen.

Theorien

Im Spektrum von η Carinae wurden periodische Veränderungen gefunden, die darauf hindeuteten, dass es sich bei η Carinae um ein Doppelsternsystem handelt, in dem sich die beiden Komponenten in etwa 5,54 Jahren einmal umkreisen. Mit eben dieser Periode treten auch die Minima bei der Röntgenstrahlung aus dem Zentralbereich auf, die sich damit als Verdeckung einer Doppelsternkomponente durch die andere erklären ließe. Die Röntgenstrahlung könnte durch das Aufeinanderprallen der Sternwinde der beiden Komponenten erzeugt werden, ebenso könnten Bedeckungsvorgänge eine Rolle spielen. Es konnte bisher zwar noch kein schlüssiges Modell dieses Systems aufgestellt werden, das alle beobachteten Phänomene zugleich erklärt, aber jüngst konnte der Anteil des Begleiters am Gesamtlicht im ultravioletten Wellenlängenbereich nachgewiesen werden, so dass an der Doppelsternthese an sich kaum noch Zweifel bestehen.

Es gibt mehrere Theorien zur Beschreibung des Mechanismus, der die Entstehung der bipolaren Wolken des Homunkulusnebels bewirkt hat: Eine besagt, dass das Magnetfeld des Sterns das fortgeschleuderte Plasma in zwei Vorzugsrichtungen gebündelt habe. Eine weitere führt die Wolken auf den Einfluss der Gravitation des Begleitsterns zurück, während eine dritte die Rotation des Sternes im Zusammenspiel mit der extrem hohen Leuchtkraft im Bereich der Eddington-Grenze dafür verantwortlich macht. Letztere wird durch die neuesten Daten favorisiert; es existiert aber noch keine einhellige Lehrmeinung.

Darüber hinaus stellte der Astronom Sveneric Johansson aufgrund von spektrografischen Untersuchungen an η Carinae von 1996 die Theorie auf, dass unmittelbar um den Stern herum ultraviolettes Laserlicht entstehe. Derartige Laserphänomene wurden zwar in der Natur bis dahin noch nicht beobachtet, im energetisch schwächeren Mikrowellenbereich strahlende kosmische Maser dagegen schon.

Einer neueren, wenig verbreiteten Hypothese zufolge ist η Carinae möglicherweise auch ein Dreifach-Sternsystem [3], bestehend aus zwei „normalen“ Sternen mit weniger als 60 Sonnenmassen und einem Neutronenstern mit schwerer Akkretionsscheibe, der die Sekundärkomponente eng umkreist.

Die Einzigartigkeit von η Carinae

Der Anblick, den η Carinae bietet, ist einzigartig. Dies liegt an der relativen Nähe zur Erde, verglichen mit anderen LBVs, und an dem Umstand, dass das Licht des Zentralsterns gegen das Licht des Nebels stark abgeschwächt wird. Dadurch wird der Nebel nicht nur auf Bildern deutlicher, sondern auch Spektrallinien des Nebels erscheinen um einen Faktor hundert stärker als ohne diese Abschwächung. Daher wurde η Carinae auch selbst lange für ein einzigartiges Objekt gehalten. Es mehren sich jedoch die Anzeichen, dass η Carinae, sähen wir ihn aus einem anderen Winkel, sich nur gering von anderen LBVs im oberen Massebereich unterscheiden würde. So weisen zum Beispiel alle in ausreichendem Detail untersuchten LBVs bipolare Nebel wie den Homunkulus auf.

Archäoastronomische Untersuchungen

Von weiterem Interesse ist für die Astronomen, historische Belege für noch frühere Ausbrüche zu finden, um Aussagen über deren Häufigkeit treffen zu können. Die Suche danach ist bisher allerdings nahezu ergebnislos geblieben, lediglich ein Mythos der Sumerer aus dem 4. bis 3. Jahrtausend v. Chr. über deren Gott Ea, der in Form eines veränderlichen Sterns erschienen sein soll, könnte mit η Carinae in Zusammenhang stehen. Bewiesen ist dies allerdings nicht, zumal keine Angaben zu finden sind, an welcher Stelle des Himmels Ea gestanden haben soll.

Siehe auch

Weblinks

Video


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Eta Car — Datenbanklinks zu Eta Carinae Stern Eta Carinae (η Car) …   Deutsch Wikipedia

  • Homunkulusnebel — Datenbanklinks zu Eta Carinae Stern Eta Carinae (η Car) …   Deutsch Wikipedia

  • Tseen She — Datenbanklinks zu Eta Carinae Stern Eta Carinae (η Car) …   Deutsch Wikipedia

  • Ε Carinae — Datenbanklinks zu Eta Carinae Stern Eta Carinae (η Car) …   Deutsch Wikipedia

  • Η Car — Datenbanklinks zu Eta Carinae Stern Eta Carinae (η Car) …   Deutsch Wikipedia

  • Η Carinae — Datenbanklinks zu Eta Carinae Stern Eta Carinae (η Car) …   Deutsch Wikipedia

  • Faust. Der Tragödie zweiter Teil — Titelblatt des 1831 vollendeten zweiten Teils der Tragödie Faust. Der Tragödie zweiter Teil in fünf Akten, bekannt auch als Faust II, ist die Fortsetzung von Johann Wolfgang von Goethes Faust I. Nachdem Goethe seit der Fertigstellung des… …   Deutsch Wikipedia

  • Eta Carinae — Datenbanklinks zu Eta Carinae Stern η Carinae …   Deutsch Wikipedia

  • Faust. Der Tragödie zweiter Teil. — Titelblatt des 1831 vollendeten zweiten Teils der Tragödie Faust. Der Tragödie zweiter Teil in fünf Akten, bekannt auch als Faust II, ist die Fortsetzung von Johann Wolfgang von Goethes Faust I und wurde im Sommer 1831 vollendet. Nachdem Goethe… …   Deutsch Wikipedia

  • Faust - Der Tragödie Zweiter Teil — Titelblatt des 1831 vollendeten zweiten Teils der Tragödie Faust. Der Tragödie zweiter Teil in fünf Akten, bekannt auch als Faust II, ist die Fortsetzung von Johann Wolfgang von Goethes Faust I und wurde im Sommer 1831 vollendet. Nachdem Goethe… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”