Infimum

Infimum

In der Mathematik treten die Begriffe Supremum, Infimum, obere/untere Schranke, nach oben/unten beschränkt bei der Untersuchung halbgeordneter Mengen auf. Das Konzept der Beschränktheit im Sinn der Existenz von solchen Schranken wird in unterschiedlichen Abwandlungen in fast allen mathematischen Teilgebieten verwendet.

Inhaltsverzeichnis

Definitionen

Suprema (und Infima) von Mengen

Anschauung

Das Supremum (auf deutsch "obere Grenze") einer Menge ist verwandt mit dem Maximum einer Menge und istanschaulich gesprochenein Element, welchesüberallen oderjenseits“ (oberhalb) aller anderen Elementen liegt. Der Ausdrucküber den anderensoll andeuten, dass das Supremum nicht das größte Elementunter den anderensein muss, sondern durchaus auch außerhalb (jenseits) der Menge liegen kann. Und weil es mehrere Elemente geben kann, die dieser Anschauung entsprechen, wird aus Eindeutigkeitsgründen das kleinste Element gewählt, welches diese Eigenschaft hat; sozusagen das Element, das amnächstenoderunmittelbarüber allen anderen liegt. (Das Supremum bezeichnet also einunmittelbar Darüberliegendes“.) Elemente, die zwar über allen Elementen einer Menge liegen, aber nicht zwingend in unmittelbarer Weise, heißen obere Schranken. Damit ergibt sich dann die Definition des Supremums als kleinste obere Schranke einer Menge.

Das Infimum (deutsch "untere Grenze") einer Menge ist analog definiert, alsunmittelbar Darunterliegendesbzw. größte untere Schranke.

Im Reellen

Diese Anschauung lässt sich leicht auf Mengen von reellen Zahlen (als Untermengen der reellen Zahlen) übertragen: Sei

X := \{ x\in \Bbb R : x < 2 \} \subseteq \Bbb R

die Menge der reellen Zahlen kleiner als 2. Dann ist 2 das Supremum von X (in \Bbb R). Denn 2 ist eine obere Schranke von X, da sie größer oder gleich (tatsächlich sogar echt größer) allen dessen Elementen istalsodarüberliegt“. Aber im Gegensatz etwa zu der Zahl 4, die auch eine obere Schranke ist, gibt es keine Zahl kleiner als 2, die auch obere Schranke von X ist. Daher ist 2 kleinste obere Schranke von X, mithin Supremum.

Durch eine kleine Abänderung wird sodann die Verwandtschaft von Supremum und Maximum deutlich. Das Maximum ist nämlich das größte Elementunter allen Elementeneiner Menge:

Offenbar hat X kein Maximum, da es zu jeder reellen Zahl kleiner als 2 wieder eine reelle Zahl kleiner als 2 gibt, die größer als sie ist. (Der Leser möge sich das veranschaulichen!) Die Zahl 2 ist als Supremum zwar größer als alle Elemente von X, liegt aber nicht in X, da sie nicht echt kleiner als sie selbst ist. Betrachten wir nun die Menge

X' := \{ x\in \Bbb R : x \le 2 \} \subseteq \Bbb R,

so ist 2 Maximum von X', da sie kleiner-gleich als sie selbst ist und es auch keine größere Zahl als 2 gibt, die kleiner-gleich 2 ist. Gleichfalls ist 2 aber auch Supremum von X' wie schon von X, da dieselben Bedingungen wie dort erfüllt sind.

Tatsächlich ist jedes Maximum immer auch Supremum. Daher ist es auch üblich, den Begriff Maximum gar nicht elementar zu definieren, sondern ihn als Sonderfall des Supremums zu benennen, wenn dieses selbst Element der Menge ist, dessen Supremum es darstellt. – Analog gilt das für das Minimum.

Im Allgemeinen

Suprema können jedoch nicht nur auf den reellen Zahlen, sondern allgemein auf halbgeordneten Mengen betrachtet werden. Die formalen Definitionen lauten wie folgt:

Ist M eine halbgeordnete Menge und T eine Teilmenge von M so gilt:

[Schranke, Beschränktheit]
Ein Element b M heißt obere (untere) Schranke von T, wenn gilt:
b \geq x\ \forall x \in T.
(Lies: b größer gleich x für alle x aus T)
Existiert eine obere (untere) Schranke von T, so heißt T nach oben (unten) beschränkt.
T heißt beschränkt, falls T nach oben und unten beschränkt ist.
Ist T nicht nach oben (unten) beschränkt, so heißt T nach oben (unten) unbeschränkt.
T ist unbeschränkt oder nicht-beschränkt, wenn T entweder nach oben oder nach unten oder nach oben und unten unbeschränkt ist.
(Soll ausgedrückt werden, dass eine Menge sowohl nach oben als auch nach unten unbeschränkt ist, so muss die Menge ausdrücklich als nach oben und unten unbeschränkt beschrieben werden.)
[Supremum / Infimum]
Ein Element b M heißt Supremum von T, wenn b die kleinste obere Schranke von T ist.
Es heißt Infimum von T, wenn es die größte untere Schranke von T ist.

Ist M die Menge der reellen Zahlen so gilt:

  • Ist T nach oben beschränkt, dann besitzt T eine kleinste obere Schranke (Beweisidee unten) und man nennt sie obere Grenze oder Supremum von Tin Zeichen \sup(T).
  • Ist T nach unten beschränkt, dann besitzt T eine größte untere Schranke (Beweis analog) und man nennt sie untere Grenze oder Infimum von Tin Zeichen \inf(T).
  • Falls T nach oben beschränkt und das Supremum von T in T enthalten ist, bezeichnet man das Supremum auch als Maximum von T, in Zeichen max(T).
  • Falls T nach unten beschränkt und das Infimum von T in T enthalten ist, bezeichnet man das Infimum auch als Minimum von T, in Zeichen min(T).
  • Ist T nach oben unbeschränkt, schreibt man: \sup T = +\infty (siehe Unendlichkeit).
    Das Symbol +∞ ist dabei aber keine reelle Zahl und auch nicht das Supremum von T im hier definierten Sinne: +∞ als Supremumswert ist gerade die formale Schreibweise dafür, dass kein Supremum vorhanden ist. Gelegentlich wird in diesem Zusammenhang +∞ auch alsuneigentliches Supremumbezeichnet.
  • Ist T nach unten unbeschränkt, schreibt man analog: \inf T = -\infty.

Suprema (und Infima) von Abbildungen

Abbildungen allgemein

Der Begriff des Supremums auf Mengen wird sinngemäß auch auf Abbildungen (Funktionen) angewendet. Denn das Bild einer Abbildung ist ja immer auch eine Menge. Nämlich für eine Abbildung

f:X \rightarrow Y

die Menge

 
  f(X) :
  = \{f(x): x \in X\} 
  = \{y \in Y : y = f(x)\ f\ddot ur\ ein\ x \in X\}

der sogenannten Elementbilder, d.h. der Bilder der einzelnen Elemente von X unter der Abbildung f.

Ist nun Y eine halbgeordnete Menge, so definiert man

 \sup f := \sup_{x \in X} f(x) = \sup f(X) = \sup \{f(x): x \in X\}

als das Supremum von f auf Xsofern es in Y existiert.

Analog wird das Infimum von f auf X definiert.

Folgen als Abbildungen

Fasst man eine Folge a1a2a3, … von Elementen aus Y als Abbildung

f:\Bbb N \rightarrow Y

aufalso gemäß

a_1 := f(1),\ a_2 := f(2),\ a_3 := f(3),\ \ldots

so ergibt sich aus der Definition des Supremums (Infimums) von Abbildungen sofort die Definition des Supremums (Infimums) einer Folge (an)sofern es in Y existiert.

Eigenschaften

Eindeutigkeit und Existenz

Ist b eine obere Schranke von T und c > b, so ist auch c eine obere Schranke von T. Ist umgekehrt c keine obere Schranke von T und b < c, so ist auch b keine obere Schranke von T. Analoges gilt für untere Schranken.

Das Supremum von T ist (im Falle seiner Existenz) eindeutig bestimmt. Dasselbe gilt für das Infimum von T.

Es ist möglich, dass eine Teilmenge T einer halbgeordneten Menge M mehrere minimale obere Schranken hat, d.h. obere Schranken, so dass jedes kleinere Element keine obere Schranke ist. Sobald T jedoch mehr als eine minimale obere Schranke hat, gibt es keine kleinste obere Schranke, d.h. kein Supremum, von T. Ein Beispiel ist die Menge M = \{a,\ b,\ c,\ d\} mit der Halbordnung \{a&amp;lt;c,\ b&amp;lt;c,\ a&amp;lt;d,\ b&amp;lt;d\}. Hier hat T = \{a,\ b\} die beiden minimalen oberen Schranken c und d.

Eigenschaften in Bezug auf eine Epsilon-Umgebung

Sei X eine nichtleere Teilmenge der Reellen Zahlen, dann gilt außerdem für das

  • Supremum von X:
  1. Wenn \sup X&amp;lt;+\infty, so existiert für alle ε > 0 ein x\in X, so dass (\sup X)-\epsilon&amp;lt;x ist.
  2. Wenn \sup X= +\infty, so existiert für alle k > 0 ein x\in X, so dass k < x.
  • Infimum von X:
  1. Wenn \inf X&amp;gt;-\infty, so existiert für alle ε > 0 ein x\in X, so dass x&amp;lt;(\inf X)+\epsilon ist.
  2. Wenn \inf X= -\infty, so existiert für alle k > 0 ein x\in X, so dass x < k.

Existenz des Supremums für beschränkte Teilmengen der reellen Zahlen

Die Existenz des Supremums für eine beschränkte Teilmenge M der reellen Zahlen kann auf mehrere Arten gezeigt werden:

Zum einen kann man die Existenz von Supremum und Infimum für beschränkte Teilmengen der reellen Zahlen einfach als Axiom festlegen. Diese Forderung wird oft Supremumsaxiom oder Vollständigkeitsaxiom genannt.

Geht man von dem Axiom aus, dass jede Intervallschachtelung genau eine reelle Zahl definiert, kann man wie folgt vorgehen: Man konstruiert eine Intervallschachtelung, die das Supremum einschließt. Dazu konstruiert man zwei Folgen, von denen die erste (an) monoton wachsend ist und nicht aus oberen Schranken von M besteht, die zweite (bn) monoton fallend ist und aus oberen Schranken von M besteht, so dass noch gilt, dass die Abstände entsprechender Folgeglieder gegen 0 gehen (indem man jeweils die Intervallmitte betrachtet und entscheidet, ob sie eine obere Schranke ist oder nicht). Damit erhält man den gemeinsamen Grenzwert sup(M) der beiden Folgen als kleinste obere Schranke von M, denn:
Jedes Element von M ist kleiner-gleich jedem Element bn der oberen Folge, also kleiner-gleich sup(M), deshalb ist sup(M) eine obere Schranke von M. Und jede reelle Zahl, die kleiner ist als sup(M), ist kleiner als wenigstens ein Element a_{n_0} (für ein gewisses n0) der unteren Folge, also keine obere Schranke.

Eine äquivalente Formulierung zur Existenz des Supremums ist das Schnittaxiom, nachdem jeder Dedekindsche Schnitt von einer reellen Zahl erzeugt wird.

Im Bereich der hyperkomplexen Zahlen kommt es bisweilen vor, dass Suprema gleichzeitig sowohl Maxima als auch keines sein können. Dieser Sachverhalt bildet einen Teil der Quantenmechanik ab, insbesondere den der hochenergetischen Teilchen.

Beispiele

Reelle Zahlen

Folgende Beispiele beziehen sich auf Teilmengen der reellen Zahlen.

\sup \{1,2,3\} = 3
\sup \{ x\in \Bbb R : 0 &amp;lt; x &amp;lt; 1 \} = \sup \{ x\in \Bbb R : 0 \leq x \leq 1 \} = 1
\sup \{ x\in \Bbb Q : x^2 &amp;lt; 2 \} = \sqrt{2} \notin \Bbb Q
\sup \{ (-1)^n - \frac{1}{n} : n \in \Bbb N \} = 1
\sup \Bbb Z = +\infty
\sup \{a\} = \inf \{a\} = \max \{a\} = \min \{a\} = a\ \forall a \in \Bbb R
\sup \{ a+b : a\in A \land b\in B\} = \sup A + \sup B
\sup -A = -\inf A bzw. -\sup A = \inf -A, wobei -A := \{-x \in \Bbb R : x \in A\}

Andere halbgeordnete Mengen

Auf \mathbb{R} hat jede beschränkte Teilmenge ein Supremum bzw. Infimum. Betrachtet man andere Mengen, auf denen Ordnungsrelationen definiert sind, so ist dies nicht zwingend:

  • Die Menge \mathbb{Q} der rationalen Zahlen ist bezüglich der natürlichen Ordnung total geordnet. Die Menge \{x\in\mathbb{Q}:x^2&amp;lt;2\}\subset\mathbb{Q} ist beispielsweise durch die Zahl 2\in\mathbb{Q} nach oben beschränkt, hat aber kein Supremum in \mathbb{Q}.
  • In der bezüglich Inklusion partiell geordneten Menge \mathcal{X}:=\{\{1\},\{2\},\{1,2,3\},\{1,2,4\}\} ist die Menge M:=\{\{1\},\{2\}\}\subset\mathcal{X} sowohl durch das Element \{1,2,3\}\in\mathcal{X} als auch durch \{1,2,4\}\in\mathcal{X} nach oben beschränkt. Ein Supremum, also eine kleinste obere Schranke von M\,\!, existiert in \mathcal{X} jedoch nicht.

Siehe auch

  • Die Untersuchung von partiell geordneten Mengen, in denen zu jeder zweielementigen Teilmenge ein Supremum und ein Infimum existiert, ist Gegenstand der Verbandstheorie.

Literatur

  • Stefan Hildebrandt: Analysis 1. Springer 2005, ISBN 3-540-25368-8.

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • infimum — [infimɔm; ɛ̃fimɔm] n. m. ÉTYM. Mil. XXe; formation sav., par substantivation du lat. infimum, neutre de infimus. → Infime (attesté en 1940 en anglais). ❖ ♦ Math. Rare. Borne inférieure …   Encyclopédie Universelle

  • Infimum — Un ensemble T de nombres réels (représenté par les boules rouges et vertes), un sous ensemble S de T (les boules vertes) et l infimum, le plus grand nombre de T inférieur ou égal à tout nombre de S (noter que pour des ensembles finis, l infimum… …   Wikipédia en Français

  • Infimum — In mathematics the infimum of a subset of some set is the greatest element, not necessarily in the subset, that is less than or equal to all elements of the subset. Consequently the term greatest lower bound (also abbreviated as glb or GLB) is… …   Wikipedia

  • Infimum — Ịnfimum   [lateinisch »das Unterste«] das, s/...ma, Abkürzung inf, untere Grenze, Finis inferior, Mathematik: Bezeichnung für die größte untere Schranke einer Menge M reeller Zahlen. Beispiele: Die Menge {x2 8x + 16 | …   Universal-Lexikon

  • infimum — noun /ɪnˈfaɪməm,ɪnˈfijməm/ (of a subset) the greatest element of the containing set that is smaller than or equal to all elements of the subset. The infimum may or may not be a member of the subset. Syn: greatest lower bound Ant: supremum …   Wiktionary

  • Infimum — In|fi|mum das; s, ...ma <aus lat. infimum, eigtl. »Unterstes« zu infimus »Unterster, Niedrigster«> untere Grenze, größte untere Schranke einer Menge von Zahlen (Math.) …   Das große Fremdwörterbuch

  • infimum — /in fuy meuhm, fee /, n. Math. See greatest lower bound. Abbr.: inf [1935 40; < L, n. use of neut. of infimus lowest (superl. of inferus low)] * * * …   Universalium

  • infimum — [ɪn fʌɪməm] noun Mathematics the largest quantity that is less than or equal to each of a given set or subset of quantities. The opposite of supremum. Origin 1940s: from L., lit. lowest part …   English new terms dictionary

  • Infimum — In|fi|mum, das; s, ...ma <lateinisch> (Mathematik untere Grenze einer beschränkten Menge) …   Die deutsche Rechtschreibung

  • infimum — /in fuy meuhm, fee /, n. Math. See greatest lower bound. Abbr.: inf [1935 40; < L, n. use of neut. of infimus lowest (superl. of inferus low)] …   Useful english dictionary

Share the article and excerpts

Direct link
https://de-academic.com/dic.nsf/dewiki/654327 Do a right-click on the link above
and select “Copy Link”