- Instruction Set Architecture
-
Eine Befehlssatzarchitektur (engl. Instruction Set Architecture, kurz: ISA) ist – vereinfacht gesagt – die formale Spezifikation bestimmter Verhaltensweisen eines Prozessors aus Sicht seines Programmierers, auf die sich dieser bei der Programmierung einer anderen CPU mit derselben Befehlssatzarchitektur reproduzierbar verlassen können muss.
Inhaltsverzeichnis
Formale Spezifikation
Zur formalen Spezifikation einer Befehlssatzarchitektur gehört die Beschreibung des Befehlssatzes und dessen binärer Kodierung ebenso, wie eine Beschreibungen der Verhaltensweise der CPU während bestimmter Betriebszustände und beim Eintreten bestimmter Ereignisse: Zu nennen wäre in diesem Zusammenhang beispielsweise das Verhalten der CPU bei einer Unterbrechungsanforderung, die Startadresse der Befehlsabarbeitung und die Initialisierung der Register nach einem Reset, aber auch der Aufbau wichtiger Datenstrukturen (bspw. der verschiedenen Descriptor-Tabellen im Protected Mode der x86-Prozessoren). Diese Aufzählung erhebt keinen Anspruch auf Vollständigkeit und soll nur verdeutlichen, dass die Spezifikation einer Befehlssatzarchitektur mehr ist als die Beschreibung der Einzelbefehle ihres Befehlssatzes.
Formen der Implementierung
Mikroprozessor
Man spricht davon, dass ein Mikroprozessor eine Befehlssatzarchitektur implementiert bzw. unterstützt, wenn er alle im Sinne der Regeln dieser Befehlssatzarchitektur gültigen Programme in der vorgesehen Art und Weise ausführen kann. Viele real existierende Befehlssatzarchitekturen sind aber historisch gewachsen und haben niemals eine formale Spezifikation erfahren. Das ist auch häufig gar nicht erwünscht, würde eine exakte Spezifizierung einen Konkurrenten doch möglicherweise in die Lage versetzen, selbst CPUs mit dieser Befehlssatzarchitektur zu bauen und ihm die Aufgabe abnehmen, selbst herauszufinden, welche Eigenschaften einer nur vage beschriebenen Befehlssatzarchitektur es nun sind, die bspw. die Wahrung der Rückwärtskompatibilität zu einem historisch gewachsenen Bestand an Software erlauben. Die Geschichte x86-kompatibler CPUs zeigt das sehr eindrucksvoll: Insbesondere die Neuentwicklungen von Intel-Konkurrenten wiesen in der ersten Hälfte der 1990er-Jahre immer wieder mehr oder weniger bedeutende Inkompatibilitäten zum Intel-Vorbild auf. In der Praxis werden also häufig auch manche in den Datenblättern nicht dokumentierte Eigenschaften oder vermeintlich unbedeutende Details einer konkreten CPU zum Bestandteil einer Befehlssatzarchitektur.
Virtuelle Maschine
Da eine Befehlssatzarchitektur lediglich eine formale Definition ist, muss sie nicht zwangsweise oder gar ausschließlich als Prozessor implementiert werden. Sie lässt sich auch in Software als eine so genannte virtuelle Maschine implementieren. Man spricht dann auch von einer Emulation. Auf diese Art lässt sich auch Software für eine Befehlssatzarchitektur ausführen und testen, bevor die zugehörige CPU überhaupt gebaut wurde. So wurden große Teile der IA-64-Unterstützung für den Betriebssystemkern Linux programmiert, bevor der erste Itanium Intels Fabriken verließ. Das ist auch der Grund, warum Linux bereits kurz nach Verfügbarkeit der ersten Testmuster auf der Itanium-CPU lauffähig war.
Charakteristische Eigenschaften
Befehlssatzarchitekturen werden unter anderem anhand der folgenden, charakteristischen Eigenschaften klassifiziert:
- Typ des Befehlssatzes
- Bitbreite
- Registeranzahl
- Adressierungsarten
- Unterbrechungsanforderungen und Ausnahmebehandlung
Diese Liste erhebt keinen Anspruch auf Vollständigkeit. Im Folgenden wird kurz auf ein paar dieser Aspekte genauer eingegangen, wobei zumeist auf weiterführende Artikel verwiesen wird.
Typ des Befehlssatzes
Bei Befehlssatzarchitekturen werden die folgenden Grundtypen von Befehlssätzen unterschieden (in chronologischer Reihenfolge):
- CISC – „Complex Instruction Set Computing“
- RISC – „Reduced Instruction Set Computing“
- VLIW – „Very Long Instruction Word“
- EPIC – „Explicitly Parallel Instruction Computing“
Weitere charakteristische Eigenschaften von Befehlssätzen finden sich im Artikel Befehlssatz.
Bitbreite
Die Bitbreite einer Befehlssatzarchitektur äußert sich in der Bitbreite der für den Programmierer sichtbaren Daten- und Adressregister und die der Verarbeitungseinheiten. Zumeist wird die Breite der Datenregister als maßgeblich für die Bitbreite der Befehlssatzarchitektur angesehen.
Beispiele für die Bitbreiten der Befehlssatzarchitekturen verschiedener CPUs und CPU-Familien sind:
- 8 Bit
- 6502 und 6510
- 8080 und 8085
- Z80 – seine weitgehend 8-bitige Befehlssatzarchitektur ist realisiert auf einer stellenweise 4-bitigen Mikroarchitektur.
- 16 Bit
- x86-kompatible Prozessoren der ersten (8086, 8088, 80186/88) und zweiten Generation (80286)
- Zilog Z8000
- 32 Bit
- x86-kompatible Prozessoren ab der 3. Generation – diese Befehlssatzarchitektur ist auch bekannt unter der Bezeichnung IA32
- 68k-Familie − die erste Generation von CPUs dieser Familie mit den Bezeichnungen 68000, 68008, 68010 und 68012 basiert auf einer 16-bitigen Mikroarchitektur, obgleich ihre Befehlssatzarchitektur von Anfang an 32-bitig war.
- 64 Bit
Art und Anzahl der Register
Die Anzahl verfügbarer bzw. implementierbarer Register ist heutzutage ein wichtiges Kriterium bei der Beurteilung einer Befehlssatzarchitektur. Ebenso wie die verschiedenen Adressierungsarten fließt auch sie unmittelbar in die binäre Kodierung eines Befehlssatzes mit ein. Näheres über die verschiedenen Typen von Registern wird im folgenden Artikel erklärt: Register (Computer)
Optionale Implementierungen
Die Anzahl der Register wird durch die Befehlssatzarchitektur nicht immer exakt vorgegeben. So ist durchaus denkbar, dass die binäre Kodierung des Befehlssatzes zwar eine maximale Anzahl von Registern vorsieht, aber für konkrete Implementierungen durchaus eine geringere Anzahl Register erlauben kann. Auf diese Art und Weise lässt sich ein und dieselbe Befehlssatzarchitektur für verschiedene Einsatzzwecke anpassen oder optimieren. Ähnliches gilt auch für optional implementierbare Befehle. Insbesondere bei Mikrocontroller-Familien ist diese Vorgehensweise beliebt, da sie einerseits eine für den Einsatzzweck einer CPU oder eines Mikrocontrollers optimierte Entwicklung bzw. Konfiguration des CPU-Kerns gestattet, andererseits aber sicherstellt, dass Entwicklungswerkzeuge und Dokumentation nicht ständig grundlegend modifiziert werden müssen. Zudem müssen die Entwickler nicht umgeschult werden oder umlernen.
Assemblersprache und Mnemonics
Häufig wird im Zusammenhang mit der Spezifikation einer Befehlssatzarchitektur noch die Notwendigkeit zur Definition einer Assemblersprache genannt, die deren Instruktionen unter anderem so genannte Mnemonics zuordnet und das Format zugehöriger Operanden festlegt. Bei der Beurteilung verschiedener CPUs mit derselben Befehlssatzarchitektur spielt dieser Aspekt aber keine Rolle. So können Hersteller durchaus CPUs mit derselben Befehlssatzarchitektur implementieren, obwohl in deren Datenblättern verschiedene symbolische Darstellungen für deren Befehle genannt sind. So hat beispielsweise Intel in seinem Datenbuch von 1975 die mnemotische Darstellung seiner Assemblersprache für den 8008 gegenüber dem Datenbuch des Vorjahres grundlegend verändert. Trotz allem implementieren die 1974 und 1975 hergestellten 8008-Exemplare zweifelsohne dieselbe Befehlssatzarchitektur. Beim Vergleich der Befehlssatzarchitekturen zweier CPUs lässt sich dieser Aspekt deshalb nicht als vergleichendes Kriterium heranziehen.
Sonstige Eigenschaften
Darüber hinaus gibt es weitere Eigenschaften von Befehlssatzarchitekturen, die hier nur kurz erwähnt werden sollen.
- wird Multitasking unterstützt?
- gibt es verschiedene Privilegierungsstufen?
- gibt es eine Form des Speicherschutzes?
- existiert eine virtuelle Speicheraddressierung?
- gibt es einen Stack?
- wie ist dieser organisiert?
- wofür lässt es sich verwenden?
- existieren Befehle für Gleitkomma-Arithmetik?
Nicht zur Befehlssatzarchitektur gehörende Aspekte
- die Mikroarchitektur, also der interne Aufbau des Prozessors.
- alles, was nicht den Kern der CPU betrifft, bspw. Peripheriegeräte, DMA- und Interrupt-Controller, Bussystem und Arbeitsspeicher
Beispiele
Die IBM-S/360-Befehlssatzarchitektur
Die erste Befehlssatzarchitektur, die wiederholt mit unterschiedlichen Geschwindigkeiten, Komplexitätsgraden und Technologien reimplementiert und stetig erweitert wurde, ist die der IBM System/360. Deren Mikroarchitektur wurde u. a. auch in einer besonderen Variante des Motorola 68000, dem MC68000/360 reimplementiert. Dabei wurde das Mikroprogramm dieser CPU derart modifiziert, dass sie einen S/360-Befehlssatz ausführen konnte. Die S/360-Befehlssatzarchitektur ist heute aber lediglich eine Untermenge der Befehlssatzarchitekturen von IBMs S/370- und S/390-Serien und der heutigen System-z-Architektur.
Weitere Beispiele
Wikimedia Foundation.