Kryogenik

Kryogenik
Schaubild einer Kompressionskältemaschine: 1) Kondensator, 2) Drossel, 3) Verdampfer, 4) Kompressor

Eine Kältemaschine ist ein Gerät, das der Kälteerzeugung dient. An jeder Kältemaschine ist deswegen immer eine Stelle zu finden, die kälter als Umgebungstemperatur ist (z. B. Verdampfer bei Kompressionskältemaschinen oder Kaltfinger bei Gaskältemaschinen). Wird ein zu kühlendes Objekt mit dieser kalten Stelle in Kontakt gebracht, wird dieses Objekt gekühlt.


Inhaltsverzeichnis

Allgemein

Eine Kältemaschine setzt einen thermodynamischen Kreisprozess um, bei dem Wärme unterhalb der Umgebungstemperatur aufgenommen und bei höherer Temperatur abgegeben wird. In diesem Sinne ist eine Kältemaschine einer Wärmepumpe ähnlich.

Zur Realisierung verwendet man:

  • sog. Kaltdampfanlagen, in denen die Eigenschaften von Stoffen genutzt werden, bei unterschiedlichen Drücken unterschiedliche Siede- bzw. Kondensationstemperaturen zu haben. Die so verwendeten Stoffe nennt man Kältemittel. Der Arbeitsbereich ist begrenzt durch die erreichbaren Siede- bzw. Kondensationstemperaturen der Kältemittel.
  • den Joule-Thomson-Effekt (JTE), der bewirkt, dass sich reale Gase bei der Entspannung (Drosselung) abkühlen. Dieser Effekt ist bspw. die Grundlage des Linde-Verfahrens. Durch mehrstufige Anwendungen können auch im industriellen Bereich sehr niedrige Temperaturen, z. B. zur Luftverflüssigung, erreicht werden.

Geschichtliches

Die Kälteerzeugung durch Abpumpen von Luft aus einem halb mit Diethylether gefüllten Glaskolben wurde bereits Mitte des 18. Jahrhunderts entdeckt, war aber noch ohne echten Nutzen. Die erste praktisch funktionierende Kältemaschine der Welt wurde 1845 von dem amerikanischen Arzt John Gorrie in Florida gebaut, der nach Wegen suchte, die Heilungschancen für Krankenhauspatienten im feuchtheißen Florida zu verbessern. Nach damaliger medizinischer Lehrmeinung war „schlechte Luft“ ein wesentlicher Krankheitsfaktor, und das aus den nördlichen Großen Seen herbeigeschaffte Wintereis, welches die einzige existierende Kühlmöglichkeit darstellte, war in Florida wegen der großen Transportverluste sehr teuer. Gorries Maschine diente zur Eiserzeugung und zugleich zur Raumkühlung (Klimaanlage). Ein Prototyp wurde gebaut, die Maschine war aber ein finanzieller Misserfolg (Patentanmeldung 8080, 6. Mai 1851). Gorrie starb einige Jahre später verarmt und verlacht. Erst in den 1870er Jahren wurden Kältemaschinen wirtschaftlich, die ersten großen Nutzer waren Brauereien, die so auch ohne natürliche kühle Höhlensysteme nach der überlegenen Pilsener Methode brauen konnten. Zu den ersten großen Herstellern zählt der deutsche Industrielle Carl von Linde.

Typen

Der wesentliche Unterschied zwischen Kompressions- und Absorptionskältemaschinen ist der, dass bei ersteren die benötigte Energie vollständig als mechanische Arbeit, bei letzteren dagegen in Form von Wärme zugeführt wird. Letztere benötigen mechanische Arbeit lediglich zur Überwindung der internen Druckverluste, insbesondere für das Expansionsventil.

Der Wirkungsgrad wird für Kompressionskältemaschinen gewöhnlich auf die elektrische Antriebsenergie bezogen, womit sich im Vergleich zu Sorptionskältemaschinen deutlich günstigere Werte ergeben. Ein Vergleich dieser Art ist jedoch unzulässig, da mechanische bzw. elektrische Antriebsenergie in der Natur nicht verfügbar ist, sondern aus fossilen oder regenerativen Quellen mit Verlusten erzeugt (umgewandelt) werden muss, was sich auch im Energiepreis niederschlägt. Bezieht man diese Verluste ein, so sind die Wirkungsgrade von Sorptionskältemaschinen auch wertmäßig vergleichbar, wenn nicht sogar besser.

Absorptionskälteanlagen

Die Absorptionskältemaschine verfügt zusätzlich über einen Lösungsmittel- und einen Kältemittelkreis. Das Arbeitsmittel besteht aus zwei Komponenten, einem Lösungsmittel und dem Kältemittel. Das Kältemittel muss in dem Lösungsmittel vollständig löslich sein. Technisch verbreitet sind Absorptionskältemaschinen mit Wasser als Kältemittel und einer wässrigen Lithiumbromid (LiBr)-Lösung als Lösungsmittel. Durch Vakuumbetrieb sind Verdampfungstemperaturen des Wassers bis ca. 3 °C erreichbar. Tiefere Temperaturen können Absorptionskältemaschinen erreichen, die NH3 als Kältemittel und Wasser als Lösungsmittel einsetzen. In großtechnisch eingesetzten Ammoniak-Absorptionskälteanlagen werden Verdampfungstemperaturen von −70 °C erreicht.

Bei Sorptionskältemaschinen kommt als weitere Heizleistung QH noch die Sorptionswärme hinzu, die aus dem Ab- bzw. Adsorber abgeführt werden muss.

Adsorptionskälteanlagen

Die Adsorptionskältemaschine arbeitet mit einem festen Lösungsmittel, dem „Adsorbens“, an dem das Kältemittel ad- bzw. desorbiert wird. Dem Prozess wird Wärme bei der Desorption zugeführt und bei der Adsorption entnommen. Da das Adsorbens nicht in einem Kreislauf umgewälzt werden kann, kann der Prozess nur diskontinuierlich ablaufen. Deshalb werden zwei Kammern mit Adsorbens verwendet, in denen innerhalb eines Arbeitszyklus (6 bis 10 Minuten) die Ad- und Desorption parallel verläuft. Nach Beendigung des Arbeitszyklus werden Wärmezufuhr und Wärmeabfuhr zu den beiden Kammern getauscht (Umschaltung, ca. 1 min.). Dann beginnt die Ad- und Desorption erneut parallel. Dadurch kann eine fast gleichmäßige Kälteerzeugung gewährleistet werden.

Diffusionsabsorptionskältemaschine

Die Diffusionsabsorptionskältemaschine arbeitet ähnlich wie die Absorptionskältemaschine, die Druckänderung wird jedoch als Partialdruckänderung realisiert. Dazu ist eine dritte Komponente für das Arbeitsmittel erforderlich, ein Inertgas. Ihr Vorteil liegt darin, dass der Druckkörper hermetisch abgeschlossen ist und keine lösbaren Dichtungen benötigt, und dass der Apparat geräuschlos arbeitet. Die Technik wird beispielsweise in Camping- und Hotelkühlschränken verwendet.

Kompressionskälteanlagen

Die Kompressionskältemaschine ist mit einem mechanischen Kompressor (Verdichter) und einem Drosselorgan (z.B. Expansionsventil) ausgerüstet. Erforderlich sind ein Kompressions- und ein Expansionselement sowie zwei Wärmeübertrager, die in einem Kreislauf derart zusammengeschaltet sind, dass die Wärmeübertrager beidseitig zwischen Kompressions- und Expansionselement geschaltet werden.

Kaltdampfkältemaschine: Prinzipschaltung

In dem Kreisprozess wird der Kältemitteldampf vom Verdichter (Kompressor) angesaugt und verdichtet (Antriebsleistung W). In dem nachgeschalteten Wärmeübertrager (Verflüssiger) kondensiert das Kältemittel. Das flüssige Kältemittel wird zu einem Drosselorgan geleitet und entspannt. Bei der Expansion nimmt der Kältemitteldruck ab, das Kältemittel kühlt ab und verdampft teilweise. In dem zweiten Wärmeübertrager (Verdampfer) nimmt das Kältemittel durch Verdampfen die zugeführte Wärme aus dem Kühlraum auf (Kühlleistung/Verdampfungswärme QK). Der Verdichter saugt das verdampfte Kältemittel wieder an und der Kreisprozess ist geschlossen.

Für den Betrieb der Kältemaschine muss, gemäß dem zweiten Hauptsatz der Thermodynamik, Energie von außen in Form von mechanischer Arbeit zugeführt werden. Die am Kondensator abgegebene Kondensationswärme ist die Summe aus der am Verdampfer aufgenommenen Kühlenergie, der Antriebsenergie und der betriebsmäßigen Verluste an der Kältedämmung und der Reibungsverluste.

Diese Technik ist weit verbreitet in Haushalts-Kühlschränken, Gefrierschränken und -truhen, Schankanlagen, Kühllagern, Klimaanlagen, Kunsteispisten, Schlachthöfen, Brauereien und der chemischen Industrie.


Dampfstrahlkälteanlage

Die Dampfstrahlkälteanlage ist eine thermische Kälteanlage, bei der Wasserdampf als Treibmittel, Kältemittel und Kälteträger verwendet wird. Durch die Expansion und Entspannung eines Wasserdampfstrahles wird ein Vakuum erzeugt und Wasserdampf aus einem Verdampfer angesaugt. Durch die Verdampfung wird das Wasserreservoir im Verdampfer abgekühlt und kann somit als Kälteträger genutzt werden.

Joule-Thomson-Effekt (JTE), Linde-Verfahren

Zur Kälteerzeugung wird die Temperatur eines Gases (z. B. Luft, Helium), das im Arbeitsbereich nicht auskondensiert, durch Drosselung abgesenkt. Mit dem JTE kann eine Abkühlung von ca. 0,4 K je bar Druckdifferenz (Luft ca. 1/4 K/bar, CO2 ca. 3/4 K/bar) an der Drossel erreicht werden. Obwohl dieser Effekt scheinbar sehr gering ist, lassen sich damit auch niedrige Temperaturen bis in die Nähe des absoluten Nullpunktes erreichen. Anlagen werden oft mehrstufig ausgeführt.

Die apparative Darstellung einer Joule-Thomson-Anlage ist ähnlich der einer Kompressionskältemaschine, die Wärmeübertrager werden jedoch nicht als Kondensator bzw. Verdampfer gebaut. Zur energetischen Optimierung ist es notwendig, vor dem Expansionsventil (Drossel) das Gas in einem Rekuperativ(Gegenstrom)-Wärmeübertrager mit dem von dem Kühler rückkehrenden Gas vorzukühlen.

1895 hat Carl Linde eine solche Anlage zur Luftverflüssigung eingesetzt und recht große Mengen (1 Eimer/h) an Luft verflüssigt. Das Joule-Thomson-Verfahren zur Luftverflüssigung heißt seitdem Linde-Verfahren. Ein technischer Gaslieferant heißt heute noch Linde, ein anderer AirLiquide.

Entscheidend für das Abkühlen nach dem Joule-Thomson-Verfahren ist jedoch, dass die Ausgangstemperatur unterhalb der Inversionstemperatur des jeweiligen Gases liegt. Diese liegt für Luft bei ca. +450 °C, für Wasserstoff bei −80 °C und für Helium bei −239 °C. Wird ein Gas unterhalb seiner Inversionstemperatur entspannt, so kühlt es sich ab, wird es oberhalb seiner Inversionstemperatur entspannt, so erwärmt es sich. Um ein Gas nach dem JT-Verfahren abkühlen zu können, muss daher die Ausgangstemperatur unterhalb der Inversionstemperatur (für ein Van-der-Waals-Gas: Ti = 6,75 · Tk = 2a / Rb mit Tk=kritische Temperatur, a=Van-der-Waals-Konstante, b=Kovolumen) liegen.

Thermoelektrischer Effekt, Peltier-Element

Zur Kühlung (oder Heizung) kann auch ein Peltier-Element verwendet werden, das elektrisch betrieben wird und ohne Kältemittel auskommt. Bei großen Temperaturdifferenzen (50...70 K) sinkt jedoch die Kälteleistung auf null. Für höhere Temperaturdifferenzen verwendet man pyramidenförmige, mehrstufige Aufbauten.

Diese Technik wird angewendet zur Temperaturstabilisierung von Halbleiterlasern und Sensoren, in Auto-Kühlboxen, in Thermocyclern (PCR) und zur Kühlung von Bildaufnehmern in Kameras von Infrarot bis UV.

Magnetische Kühlung

Eine weitere Kühlmethode beruht auf den magnetischen Eigenschaften bestimmter Stoffe. Bei Magnetisierung setzen manche Stoffe Wärme frei, man nennt diese dann magnetocalorische Stoffe. Bei der magnetischen Kühlung wird der Stoff in ein Magnetfeld gebracht, wobei er sich erhitzt; die Wärme wird hier meist mittels einer Kühlflüssigkeit abgeführt. Der wieder auf Umgebungstemperatur gebrachte Stoff verlässt nun das Magnetfeld und entmagnetisiert sich im Bereich, der gekühlt werden soll. Bei der Entmagnetisierung nimmt der Stoff Wärme auf. Energie muss zugeführt werden, um den magnetisierten Stoff aus dem Magnetfeld zu entfernen.

Solche Kühlsysteme sind meist effizienter als Systeme, die mit Dampf arbeiten, aber teurer, weil geeignete magnetocalorischen Stoffe, z. B. Gadoliniumverbindungen, teuer sind.

Verdunstungskühlung

Die Verdunstungskühlung ist eine der ältesten und bewährtesten Kühlmethoden. Durch Verdunsten von Wasser an der Luft entsteht ein Kühlpotential, das immer unterhalb der Umgebungstemperatur liegt. Die erreichbare Untertemperatur hängt von den klimatischen Bedingungen der Luft ab und liegt in Deutschland im Mittel bei gut 10 °C. Dies ist in vielen Fällen zur Raumklimatisierung ausreichend. Auch wird in einigen verfahrenstechnischen Anlagen, z.B. Nasskühlturm, die Kühlwirkung bei einer Luftkühlung verstärkt.

Die Verdunstungskühlung ist ein durch Phasenübergang verstärkter Wärmetransportprozess von hoher zu niedriger Temperatur und damit ein selbstablaufender, "rechtsläufiger" Kreisprozess. Deshalb wird bis auf den Transport von Luft und Wasser keinerlei mechanische, elektrische oder thermische Energie benötigt.

Leistungszahl

Der thermische Wirkungsgrad einer Kühl- oder Heizleistung bezogen auf die eingesetzte mechanische Arbeit wird als Leistungszahl oder Leistungsziffer bezeichnet. In der älteren Literatur wird das Symbol ε für die Leistungszahl verwendet. In der aktuellen Normung werden die englischen Bezeichnungen verwendet; für eine Kälteanlage wird der Begriff EER (energy efficiency ratio) und für Wärmepumpen COP (Coefficient of Performance) verwendet.

Für die Kälteanlage mit Nutzung der Kühlleistung QK gilt:

 \varepsilon_{K\ddot{u}hlung} = EER = \frac{Q_{K}}{W}

Die Abwärmeleistung ist die Summe aus der aufgenommen Kühlleistung und der technischen Arbeit, so dass gilt:

 \varepsilon_{K\ddot{u}hlung} = EER = \frac{Q_{K}}{Q_{A} - Q_{K}} .

Analog kann für die Wärmepumpe mit der Heizleistung QH geschrieben werden:

 \varepsilon_{Heizung} = COP = \frac{Q_{H}}{W}

Bei der Wärmepumpe ist die Heizleistung die Summe aus der aufgenommenen Wärme bei Umgebungsbedingungen QU und der technischen Arbeit, so dass gilt:

 \varepsilon_{Heizung} = COP =\frac{Q_{H}}{Q_{H} - Q_{U}} .

Der Carnotprozess stellt den Grenzfall eines reversiblen Prozesses dar, der ideale Voraussetzungen fordert, die technisch nicht erreichbar sind.

Die Wärmemenge kann ausgedrückt werden mit der Entropie S:

 dQ = T \sdot dS

Wenn der reale Prozess mit dem Carnotprozess verglichen wird, kann für die Kälteanlagen geschrieben werden:

 \varepsilon_{K\ddot{u}hlung} = EER = \frac{Q_{K}}{Q_{A} - Q_{K}} < \frac{T_{K}}{T_{A} - T_{K}} = \frac{1}{\eta_c}

Alle Temperaturen T in Kelvin.

Die Entropieänderung ΔS ist für den reversiblen Carnotprozess für die beiden isothermen Zustandsänderungen bei den Temperaturen TH und TU identisch und kann somit gekürzt werden.

Analog gilt für die Wärmepumpe:

 \varepsilon_{Heizung} = COP = \frac{Q_{H}}{Q_{H} - Q_{U}} < \frac{T_{H}}{T_{H} - T_{U}} = \frac{1}{\eta_c} .

Die Leistungszahlen technisch realisierter Kompressionskälteanlagen liegen meistens über 1. Im Bereich der Klimatisierung mit geringer Differenz zwischen Temperatur der gekühlter Luft und der Umgebung sind Leistungsziffern bis 7 erreichbar.

Siehe auch

Literatur

  • IKET (Hrsg.): Pohlmann-Taschenbuch der Kältetechnik. Grundlagen, Anwendungen, Arbeitstabellen und Vorschriften. 19., überarbeitete und erweiterte Auflage 2008. C.F. Müller Verlag, Heidelberg 2008, ISBN 978-3-7880-7824-9.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Kryogenik — Kry|o|ge|nik, die; [engl. cryogenic] (Physik): Wissenschaft vom Verhalten der Stoffe bei extrem niedrigen Temperaturen …   Universal-Lexikon

  • Kryogenik — Kry|o|ge|nik die; <aus gleichbed. engl. cryogenics; vgl. 2↑...ik> Forschungszweig, der sich mit den physik. Erscheinungen im Bereich tiefer Temperaturen befasst (Phys.) …   Das große Fremdwörterbuch

  • Test-Fuchs — Die Firma Test Fuchs ist ein mittleres Unternehmen im niederösterreichischen Waldviertel, das auf Messtechnik, Prüfanlagenbau und Kryogenik spezialisiert ist. Es wurde 1946 in Groß Siegharts von Fritz Fuchs gegründet und ist hundertprozentig im… …   Deutsch Wikipedia

  • Kryotechnik — Kryotechnik, Kryogenik (von altgriechisch κρύος [kryos] „Frost, Eis“) oder Tieftemperaturtechnik ist die Technik zur Erzeugung tiefer Temperaturen (Joule Thomson Effekt) und zur Nutzung physikalischer Effekte bei tiefen Temperaturen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”