- Lunar Excursion Module
-
Dieser Artikel behandelt die amerikanische Mondlandefähre des Apolloprogramms. Für die Mondlandefähre des sowjetischen Mondprogramms siehe: Lunnyi Korabl (LK), für die des neuen amerikanischen Mondprogramms siehe: Altair (Mondlandefähre). - Primary Guidance, Navigation and Control System (PGNCS)
- Apollo Guidance Computer (AGC)
- Abort Guidance System (AGS)
- sowjetische Mondlandefähre (LK)
- Altair-Mondlandefähre
- Die Landefähre (NASA: Chariots for Apollo, Kapitel 6) - englisch
- Smithsonian National Air and Space Museum
- John F. Kennedy Space Center
- The Cradle of Aviation Museum
- Museum of Science and Industry
- Nachfolge des Mergers zwischen Grumman und Northrop
- Start der Apollo 17 vom Mond als Quicktime Movie.
Die Mondlandefähre (-LM- für Lunar Module, oder auch -LEM- für Lunar Excursion Module) ist ein ab 1963 von der Firma Grumman für die NASA im Rahmen des Apollo-Programms entwickeltes Raumfahrzeug zur Landung auf dem Mond. Die Vorplanungen der NASA gehen allerdings schon bis ins Jahr 1960 zurück. Insgesamt wurden 16 Stück hergestellt.
Inhaltsverzeichnis |
Allgemein
Um Menschen auf den Mond zu bringen, gab es die verschiedensten Szenarien, die in der Frühphase des Apollo-Projekts durchdacht wurden. Relativ schnell kam die NASA von einem komplett auf dem Mond landenden Raumfahrzeug hin zu einem geteilten System, bei dem ein Astronaut in der „Rückkehrkapsel“ (der Kommando- und Serviceeinheit, Command and Service Module, CSM) um den Mond kreist und ein gesondertes „Landefahrzeug“ mit zwei Astronauten zur Mondexkursion genutzt werden soll. Dieses Konzept ist massenoptimiert, aber technisch komplex, da beide Fahrzeuge eigenständig navigieren und nach dem Wiederaufstieg im Mondorbit aneinander docken müssen.
Entwicklung
Im Jahre 1963 erging der Auftrag zum Bau der Landefähre an die Firma Grumman in Bethpage, New York. Thomas J. Kelly, der schon die Frühstudien zur Entwicklung des LM begleitete, wird im allgemeinen als der Vater der Landefähre bezeichnet. Wie er allerdings selbst sagte, war das LM eine Gemeinschaftsproduktion vieler. Beispielsweise waren auch die zukünftigen Apollo-Astronauten an der Entwicklung und Konstruktion beteiligt, da sie das LM ja letztendlich fliegen und landen mussten. Hauptsächlich waren dies Scott Carpenter, Charles Conrad und Donn Eisele.
Das LM war das größte bemannte Raumfahrzeug, das bis dahin je entwickelt und gebaut wurde. Im Inneren der Landefähre musste für zwei Astronauten Platz genug vorhanden sein, um das LM evtl. auch manuell zu fliegen und zu landen (dies sollte im Stehen passieren). Die Insassen mussten sich die Raumanzüge an- und auch wieder ausziehen und aus dem Fahrzeug zur Oberfläche aussteigen können. Der Zwang zur Gewichtsersparnis war noch größer als beim CSM, da die Landung auf dem Mond wie auch der Wiederaufstieg je eine Geschwindigkeitsänderung von etwa 1800 m/s erfordern. Es musste Raum für die mitgebrachten Bodenproben (Mondgestein) vorhanden sein und die Astronauten mussten während mehrerer Tage im LM leben, essen, trinken und schlafen können.
Da das LM alleine zum Mond abstieg, musste es auch ein eigenständiges Lebenserhaltungssystem und eine unabhängig arbeitende Elektrik, inklusive Navigation, haben. Die Firmen, die den Zuschlag zur Entwicklung des Lebenserhaltungssystems erhielten, waren andere als die, die für das CSM verantwortlich waren. Bei der Apollo 13-Mission stellte sich das als schwerwiegender Fehler heraus, da beide Systeme teilweise inkompatibel waren. Trotzdem konnten auch die Astronauten von Apollo 13 zur Erde zurückkehren, indem sie sich nach der Explosion in der Serviceeinheit eine längere Zeit im noch funktionsfähigen LM aufhielten. Das LM diente dabei sozusagen als Rettungsboot. Das LM verwendete auch andere Treibstoffe und Triebwerke als das SM, die Navigationseinheit war hingegen weitgehend identisch.
Ein spezielles Problem stellten die Landebeine dar. Sie sollten so grazil und leicht wie möglich, aber auch so stabil wie nötig für eine Landung auf dem Mond sein und die entstehenden Stöße dämpfen können. Außerdem mussten sie einklappbar sein, da der Durchmesser der Raketenstufe schon relativ früh festgelegt wurde. Zu Beginn der Planungen sahen die Entwickler fünf Landebeine vor. Aus Platzgründen wurden dann aber nur vier realisiert, was der Standstabilität aber keinen Abbruch tat. Zum Erreichen der Mondoberfläche bekam ein Landebein eine anmontierte Leiter.
Da die Mondlandefähre im Schwerefeld des Mondes arbeiten musste, war es unmöglich, die Flugeigenschaften des LM auf der Erde zu testen. Änderungen am LM, dahingehend, ein Schwebetriebwerk einzubauen, stellten sich als zwecklos heraus. Auch Tests mit an Helikoptern aufgehängten Landern brachten keine verwertbaren Ergebnisse. Schließlich versuchte man, die Mondgravitation nachzubilden, indem speziell dafür gebauten Lande-Trainingsgeräten, den LLTVs, mittels zusätzlicher Triebwerke ein Auftrieb gegeben wurde. Da sich Auftrieb und Steuerdüsen aber gegenseitig beeinflussten, waren die LLTVs wenig stabil; es kam zu mehreren Abstürzen, wobei sich die Piloten, darunter Neil Armstrong, mit dem Schleudersitz retten konnten. In der Folge wurde der Einsatz der LLTVs reduziert und nur noch den Missionskommandanten gestattet. Eine besondere Konstruktion war die LLRF zum Üben der letzten Landesequenz bis zum Aufsetzen. Insbesondere kamen in bis dahin nicht gekanntem Ausmaß Simulatoren zum Einsatz.
Während des Starts, der (bis zu drei) Parkorbits und des Einschusses in die Mondbahn verweilte die Landefähre in einem kegelförmigen Adapter oberhalb der dritten Stufe der Saturn V. Danach wurde das Apollo-Raumschiff von der Saturn V getrennt, drehte um 180 Grad, dockte wieder an das LM an, und zog es von der leeren Stufe weg. Die Gesamtkombination flog dann zum Mond.
Technische Daten
Die Landefähre hatte betankt ein Gesamtgewicht von 14.696 kg, eine Gesamthöhe von 6,40 m und einen Durchmesser von 4,30 m (9,50 m bei ausgefahrenen Landebeinen). Sie bestand aus über einer Million Teilen, hatte redundant ausgelegte Funk- und Radargeräte, die bereits erwähnte Lebenserhaltung und einen Computer. Diese Komplexität machte neue Abläufe in der Planung, Herstellung und Qualitätssicherung notwendig. Die fehlende Atmosphäre auf dem Mond bedingte daneben auch den Schutz vor Mikrometeoriten sowie einen Thermalschutz in Form aluminium- und goldbedampfter Kaptonfolien.
Die Mondlandefähre wurde nach rein funktionalen Gesichtspunkten entwickelt. Die Aerodynamik spielte dabei wegen des Vakuums im Weltraum bzw. auf dem Mond keine Rolle. Das System bestand aus zwei Stufen: der Abstiegsstufe (Descent Stage - DS) und der Aufstiegsstufe (Ascent Stage - AS), von denen jede mit einem Haupttriebwerk ausgestattet war. Dieser Aufbau bedingt, dass der Schwerpunkt sehr genau auf der Triebwerksachse liegt, was durch unterschiedliche konstruktive Maßnahmen erreicht wurde.
Abstiegsstufe (DS)
Die Abstiegsstufe war der untere Teil und enthielt neben dem Triebwerk die Tanks für Treibstoff, Sauerstoff, Wasser und Helium. Außen an der Struktur befanden sich die vier Landebeine und die Ausrüstung für die Außenmissionen. Ein nicht unbeträchtlicher Teil der Gesamtmasse der Stufe entfiel schließlich auf die Batterien für die Versorgung des Bordnetzes von 28 V.
Die Landebeine gaben dem Vehikel ein spinnenartiges Aussehen, was ihm bei den Astronauten auch den Spitznamen „Spider“ eintrug. Die Stufe war inklusive der Landebeine 3,24 m hoch. An dem Bein, das sich unter der Ausstiegsluke befand, war eine Leiter angebracht. Nach Abschluss der Mission diente die Abstiegsstufe als Startbasis für die Aufstiegsstufe. Ein Sprengmechanismus trennte die beiden Stufen voneinander, wobei die Abstiegsstufe auf dem Mond zurückblieb. Notfalls konnte die Trennung auch während der Abstiegsphase durchgeführt werden, um den Abbruch einer Landung mit sicherer Rückkehr zum CSM zu ermöglichen.
Struktur
Strukturell bestand die Abstiegsstufe aus einem Doppelkreuz aus einem zentralen Prisma und vier gleich großen, an die Seitenflächen angebrachten Kastenstrukturen. Die einzelnen Paneele bestanden aus gefrästen und chemisch bearbeiteten Aluminiumplatten, die miteinander vernietet waren. Mittig befand sich das Triebwerk, in den vier Seiten waren symmetrisch die je zwei Tanks für den Treibstoff und den Oxidator untergebracht. Die äußeren Diagonalen des Kreuzes sind verstrebt und verkleidet, so dass die DS insgesamt die Form eines Achtecks annahm. In diesen dreieckigen Segmenten sind die weiteren Einrichtungen untergebracht. Die Landebeine sind mit Streben an die äußeren Ecken angebunden.
Triebwerk der Abstiegsstufe
Das Abstiegstriebwerk war schwenkbar und lieferte eine Schubleistung von 10.000 lbs (44 kN). Die Leistung des Triebwerks konnte vom Computer oder manuell in zwei Bereichen bis auf 1050 lbs (4,7 kN) gedrosselt werden. Als Treibstoff wurde ein Gemisch aus 50% Hydrazin (N2H4) und 50% Unsymmetrischem Dimethylhydrazin, genannt Aerozin 50, verwendet. In Verbindung mit dem Oxidator Distickstofftetroxid (N2O4) ist die Mischung hochexplosiv und hypergol, zündet also bei Kontakt miteinander selbständig, ohne dass ein Zündsystem gebraucht würde. Ein weiterer Tank enthielt Helium, welches als Treibgas den Oxidator und den Brennstoff in die Brennkammer presste.
Aufstiegsstufe (AS)
Die Aufstiegsstufe enthielt die Kabine für zwei Astronauten, die sich im vorderen Teil aufhielten (links der Kommandant, rechts der Pilot, aus der Sicht der Astronauten), einen mittleren Abschnitt mit allen Kontrollen und dem Aufstiegstriebwerk, und einem hinteren Teil, der die Elektronik beherbergte. Die Tanks, Antennen, Lageregelung sowie die äußere Hülle wurden um den Zylinder herumgebaut, was der Aufstiegsstufe ihr charakteristisches Aussehen gab. Um Gewicht zu sparen, mussten die beiden Astronauten bei der Landung stehen. Sie wurden von Gurten in ihrer Position gehalten. Im vorderen Fußbereich, zwischen den Astronauten, befand sich eine annähernd quadratische Luke von etwa 82 cm Breite und Höhe, die nach der Landung zum Ausstieg genutzt wurde. Im Mittelabschnitt befanden sich ein großer Teil der Lenk- und Kommunikations- sowie der Drucksysteme. Hier wurden auch die Gesteinsproben für den Rücktransport untergebracht. Eine weitere Luke von etwa 84 cm Durchmesser war im oberen Bereich des mittleren Abschnitts angebracht und diente als Verbindung zwischen der Landefähre und dem Kommandomodul. Die Aufstiegsstufe verfügte über drei Fenster, zwei dreieckige nach vorne zur Beobachtung der Landung und ein kleines rechteckiges in der Oberseite zur Kontrolle der Annäherung an das Mutterschiff. Die Lage der Mondlandefähre im Raum wurde durch 16 Steuerdüsen, die in vier Gruppen (sogenannten "Quads") angeordnet waren, kontrolliert. Diese hatten einen vergleichsweise hohen Schub und waren weit außen angebracht. Die sich dadurch ergebenen hohen Momente führten, insbesondere bei leeren Tanks, zu einem von den Astronauten als "eckig" bezeichneten Flugverhalten.
Struktur
Die Aufstiegsstufe ist um einen liegenden Zylinder, der die Druckkabine bildet, herum aufgebaut. Der Zylinder bestand wiederum aus gefrästen Aluminiumplatten, Vorder- und Rückseite waren besonders versteift. Anders als in der Plattenstruktur der Abstiegsstufe waren alle weiteren Teile (Tanks, Lageregelungsdüsen, Antennen und der rückwärtige Instrumententräger) mit Streben angeschlossen. Wiederum musste auf die Lage des Schwerpunktes geachtet werden; da die Aufstiegsstufe nur zwei Tanks hat, befand sich der leichtere Treibstofftank (auf der von den Astronauten aus gesehen linken Seite) deutlich weiter außen als der des Oxidators. Das Strebewerk verschwand unter der äußeren Verkleidung.
Triebwerk der Aufstiegsstufe
Das Triebwerk für den Rückstart vom Mond erzeugte einen nicht regelbaren Schub von 3.500 lbf (15,6 kN) und konnte nur einmal gestartet werden. Das war ausreichend, um die betankt 4,5 Tonnen schwere Aufstiegsstufe zurück in den Mondorbit zu befördern. Die Treibstoffe sind dieselben wie für die Abstiegsstufe. Das Triebwerk war so einfach wie möglich und ohne bewegliche Teile aufgebaut, um eine möglichst hohe Zuverlässigkeit zu erreichen. Daher kam eine Druckgasförderung zum Einsatz. Die Steuerung während der Wiederaufstiegsphase wurde von einem Computer durchgeführt, der ein eigenes Aufstiegsprogramm, unabhängig von der Hauptnavigation, hatte. Eine manuelle Steuerung war aber ebenfalls möglich.
Mondauto
Apollo 15 war im Rahmen des Apollo-Programms die erste der drei sogenannten J-Missionen, die einen längeren Aufenthalt auf dem Mond vorsahen. Ein batteriebetriebenes Mondauto (engl. Lunar Roving Vehicle), das zum Transport zusammengeklappt an der Außenseite der Mondlandefähre angebracht war, erlaubte es, sich freier über die Mondoberfläche zu bewegen und ein größeres Gebiet zu erforschen.
Klimasystem
Das Klimasystem der Mondlandefähre war mit den Raumanzügen der Astronauten so weit kompatibel, dass sie an der Fähre bis zu sechsmal wieder aufgeladen werden konnten.
Historie der 16 Mondlandefähren
Nr. | Name | Apollo | Verbleib des LEM | Bemerkung |
01 | - | 5 | in Erdatmosphäre verglüht | Unbemannter Test im Erdorbit. Auf- und Abstiegsstufe traten kurz nach Beendigung der Mission mit 19 Tagen Abstand in die Atmosphäre ein. |
02 | - | - | Smithsonian National Air and Space Museum, Washington D.C. | War für einen unbemannten Test im Erdorbit vorgesehen, auf den wegen des Erfolges von LM-1 verzichtet wurde. |
03 | Spider | 9 | in Erdatmosphäre verglüht | Bemannter Test im Erdorbit. Die Abstiegsstufe verglühte kurz nach der Mission. Die Aufstiegsstufe verblieb einige Jahre im Erdorbit. |
04 | Snoopy | 10 | Mond-, bzw. Sonnenorbit | Bemannter Test im Mondorbit. Die Abstiegsstufe verblieb in einem niedrigen Mondorbit und stürzte später an unbekannter Stelle ab. Die Aufstiegsstufe wurde gezielt in eine Sonnenumlaufbahn gebracht. |
05 | Eagle | 11 | Mond | Erfolgreiche Mondlandung. Die Aufstiegsstufe verblieb im Mondorbit und stürzte später unkontrolliert auf den Mond. |
06 | Intrepid | 12 | Mond | Erfolgreiche Mondlandung. Die Aufstiegsstufe wurde gezielt auf dem Mond in der Nähe der Landestelle zum Absturz gebracht. |
07 | Aquarius | 13 | in Erdatmosphäre verglüht | Mission abgebrochen. Das LEM diente als „Rettungsboot“. Auf- und Abstiegsstufe wurden nicht getrennt. |
08 | Antares | 14 | Mond | Erfolgreiche Mondlandung. Die Aufstiegsstufe wurde gezielt auf dem Mond in der Nähe der Landestelle zum Absturz gebracht. |
09 | - | - | John F. Kennedy Space Center | War für einen Mondflug vorgesehen, der zwischen Apollo 14 und Apollo 15 hätte stattfinden sollen, der aber aus Kostengründen gestrichen wurde. |
10 | Falcon | 15 | Mond | Erfolgreiche Mondlandung. Die Aufstiegsstufe wurde gezielt auf dem Mond in der Nähe der Landestelle zum Absturz gebracht. |
11 | Orion | 16 | Mond | Erfolgreiche Mondlandung. Das gezielte Absturzmanöver misslang. Die Aufstiegstufe verblieb in einem Mondorbit und stürzte später unkontrolliert auf den Mond. |
12 | Challenger | 17 | Mond | Erfolgreiche Mondlandung. Die Aufstiegsstufe wurde gezielt auf dem Mond in der Nähe der Landestelle zum Absturz gebracht. |
13 | - | - | The Cradle of Aviation Museum, New York | War bereits im Bau, als weitere Apollo-Flüge abgesagt wurden. |
14 | - | - | Franklin Institute, Philadelphia | War bereits im Bau, als weitere Apollo-Flüge abgesagt wurden. |
15 | - | - | verschrottet | War bereits im Bau, als weitere Apollo-Flüge abgesagt wurden. |
16 | - | - | Museum of Science and Industry, Chicago | War bereits im Bau, als weitere Apollo-Flüge abgesagt wurden. |
Für Apollo 15 wurde LM-10 verwendet, das eine längere Aufenthaltsdauer ermöglichte und ein Mondauto mitführen konnte.
Siehe auch
Weblinks
Wikimedia Foundation.