Paarinstabilitätssupernova

Paarinstabilitätssupernova
Die Supernova 1994D in der Galaxie NGC 4526 (heller Punkt links unten)
Bild der Supernova 1987A nach ca. 20 Jahren
Diese NASA-Illustration zeigt den Aufbau einer Supernova vom Typ 1a.

Eine Supernova (Plural: Supernovae) ist das schnell eintretende, helle Aufleuchten eines Sterns am Ende seiner Lebenszeit durch eine Explosion, bei der der Stern selbst vernichtet wird. Die Leuchtkraft des Sterns nimmt dabei millionen- bis milliardenfach zu, er wird für kurze Zeit so hell wie eine ganze Galaxie, bei einer Hypernova sogar das Billiardenfache, also so hell wie ein Galaxienhaufen.

Es gibt zwei grundsätzliche Mechanismen, nach denen Sterne zur Supernova werden können:

  1. Massereiche Sterne mit einer Anfangsmasse von mehr als etwa acht Sonnenmassen beenden ihre Entwicklung mit einem Kernkollaps nach dem völligen Verbrauch ihres nuklearen Brennstoffs. Es kann ein kompaktes Objekt, etwa ein Pulsar oder ein Schwarzes Loch, entstehen.
  2. Sterne mit geringerer Masse können ebenfalls als Supernova explodieren, aber nur dann, wenn sie sich in einem engen Doppelsternsystem befinden und in ihrem vorläufigen Endstadium als Weißer Zwerg Material von ihrem Begleiter, typischerweise einem roten Riesen, akkretieren. Im Laufe der Zeit kann es dabei zu mehreren Nova-Ausbrüchen kommen, bei denen der Wasserstoff des akkretierten Gases fusioniert und Fusionsprodukte zurück bleiben. Das setzt sich so lange fort, bis die Masse des Weißen Zwergs die Chandrasekhar-Grenze überschreitet und er durch seine Eigengravitation zu kollabieren beginnt. Die dabei einsetzende Kohlenstofffusion zerreißt den Stern völlig. Daher wird dieses Phänomen auch als thermonukleare Supernova bezeichnet, eine weitere Bezeichnung ist Supernova vom Typ Ia. Obwohl hier vergleichsweise massearme Sterne beteiligt sind, sind diese Ereignisse die mit Abstand hellsten Supernovae.

Bekannte Supernovae sind die Supernova 1987A in der Großen Magellanschen Wolke und die Keplersche Supernova 1604. Speziell letztere und die Brahesche Supernova 1572 haben die Astronomie beflügelt, da dadurch die klassische Auffassung von der Unveränderlichkeit der Fixsternsphäre endgültig widerlegt wurde.

Inhaltsverzeichnis

Benennung und Klassifikation

Historische Supernovae
Jahr Beobachtet in maximale scheinbare Helligkeit
185 Sternbild Zentaur −6 mag
386 Sternbild Schütze  ?
393 Sternbild Skorpion −3 mag
1006 Sternbild Wolf -7,5 ± 0,4[1]
1054 Sternbild Stier −6 mag
1181 Sternbild Kassiopeia −2 mag
1572 Sternbild Kassiopeia −4 mag
1604 Sternbild Schlangenträger −2 mag
1680 Sternbild Kassiopeia +6 mag
1885 Andromedanebel +6 mag
1979 Galaxie Messier 100 +11,6 mag
1987 Große Magellansche Wolke +3 mag

Supernovae werden mit dem Vorsatz „SN“ nach ihrem Entdeckungsjahr und einem alphabetischen Zusatz benannt. Ursprünglich bestand dieser Zusatz aus einem Großbuchstaben, der alphabetisch in der Reihenfolge der Entdeckung vergeben wurde. Beispielsweise war SN 1987A die erste im Jahr 1987 – gegen Ende Februar – entdeckte Supernova. 1954 wurden erstmals mehr als 26 Supernovae in einem Jahr entdeckt: ab der 27. Supernova werden seither kleine Doppelbuchstaben von „aa“ bis „zz“ vergeben. Mit heutigen Teleskopen und Suchprogrammen werden jedes Jahr mehrere Hundert Supernovae entdeckt: 2005 waren es 367 (bis SN 2005nc), 2006 waren es 551 (bis SN 2006ue) und 2007 sogar 572 (bis SN2007uz).

Die Supernovarate einer Galaxie hängt davon ab, wie viele Sterne dort neu entstehen, da Supernovae in astronomischen Zeitmaßstäben kurz, nur wenige dutzend Millionen Jahre, nach der Entstehung stattfinden. Für die Milchstraße werden etwa 20 ± 8 Supernovae pro Jahrtausend geschätzt, wovon im letzten Jahrtausend sechs beobachtet wurden. Etwa zwei Drittel der galaktischen SN blieben durch die Extinktion der galaktischen Scheibe verborgen.

Man unterscheidet historisch grob zwei Typen von Supernovae, die sich aber nicht mit den physikalischen Explosionsmechanismen decken. Die Einteilung erfolgt nach dem Kriterium, ob in den Spektren im Frühstadium der Supernova Spektrallinien des Wasserstoffs sichtbar sind oder nicht. Es gibt den Typ I mit den Untergruppen Ia, Ib und Ic, bei dem keine Wasserstofflinien sichtbar sind, und Typ II mit Wasserstofflinien (siehe Tabelle). Die groben Typenbezeichnungen wurden 1939 von Rudolph Minkowski eingeführt, seitdem wurden sie verfeinert.

Supernovatypen Ib und Ic

Bei Supernovae vom Typ Ib ist vor der Explosion die Wasserstoffhülle abgestoßen worden, so dass bei der Explosion keine Spektrallinien des Wasserstoffs beobachtet werden. Der Explosionstyp Ic tritt auf, wenn zusätzlich noch die Heliumhülle des Sterns abgestoßen wurde, so dass auch keine Spektrallinien des Heliums auftreten. Auch diese Explosionen werden durch einen Kernkollaps hervorgerufen, und es bleibt ein Neutronenstern oder ein Schwarzes Loch zurück.

Die Untertypen II-L und II-P

Supernovae vom Typ II werden noch weiter unterschieden. Diese weitere Unterteilung richtet sich nach dem Kriterium, ob die Helligkeit der Supernova mit der Zeit eher linear abnimmt (Typ SN II-L) oder während des Abklingens eine Plateauphase durchläuft (Typ SN II-P). Die Spitzenwerte der absoluten Helligkeiten zeigen bei SN II-P eine breite Streuung, während die meisten SN II-L fast gleiche Maximalhelligkeiten besitzen. Die Existenz von Plateauphasen wird dadurch erklärt, dass die ausgestoßene Masse und damit die Geschwindigkeit der Hülle der Supernova sehr groß ist. Der Rückgang der Helligkeit aufgrund der Abkühlung wird durch die rasche Ausdehnung der Hülle wegen der dadurch vergrößerten Oberfläche kompensiert und die Lichtkurve wird durch ein Plateau beschrieben. Die maximalen Helligkeiten hängen dabei vom Radius des Vorgängersterns ab, wodurch die große Streuung in den Maximalhelligkeiten der SN II-P erklärt wird. Supernovae vom Typ II-L haben geringere Expansionsgeschwindigkeiten, so dass ihre Helligkeit bereits in frühen Stadien von radioaktiven Prozessen bestimmt wird. Dadurch tritt eine geringere Streuung der Maximalhelligkeiten auf (Young, Branch, 1989). Die Supernova SN 1979C ist ein Beispiel für den Typ II-L. Hier nahm allerdings nur die Helligkeit im sichtbaren Licht ab – im Röntgenbereich strahlt die Supernova noch heute genauso hell wie bei ihrer Entdeckung 1979. Welcher Mechanismus diese andauernde Helligkeit verursacht, ist bis jetzt noch nicht vollkommen erforscht.

SN I: Frühes Spektrum enthält keine Wasserstofflinie SN II: Frühes Spektrum enthält Wasserstofflinie
SN Ia: Spektrum enthält Silizium Spektrum enthält kein Silizium SN IIb: Heliumlinie dominant „Normale“ SN II Wasserstofflinie dominant
SN Ib: Viel Helium SN Ic: Nur wenig Helium SN II L: Licht geht nach Maximum linear zurück SN II P: Licht bleibt nach Maximum eine Weile auf hohem Niveau

Kernkollaps- oder hydrodynamische Supernovae

Vorläuferstern

Nach der heute allgemein anerkannten Theorie vom Gravitationskollaps, die zuerst 1938 von Fritz Zwicky aufgestellt wurde, tritt eine Supernova dieses Typs am Ende des „Lebens“ eines massereichen Sterns auf, wenn er seinen Kernbrennstoff für die stellare Nukleosynthese komplett verbraucht hat. Sterne mit Anfangsmassen zwischen etwa acht bis zehn und 30 Sonnenmassen beenden ihre Existenz als Stern in einer Typ-II-Explosion, massereichere Sterne explodieren als Typ Ib/c. All diese Sterne durchlaufen in ihrem Kern die verschiedenen energiefreisetzenden Fusionsketten bis hin zur Synthetisierung von Eisen. Supernovae vom Typ Ib oder Ic durchlaufen vor der Explosion eine Wolf-Rayet-Sternphase, in der sie ihre äußeren, noch wasserstoffreichen Schichten in Form eines Sternwinds abstoßen.

So setzt, nachdem der Wasserstoff im Kern des Sternes zu Helium fusioniert ist, eine weitere Fusionsstufe ein, der Drei-Alpha-Prozess, in dem Helium über das Zwischenprodukt Beryllium zu Kohlenstoff fusioniert. Dies wird möglich, da der Stern durch den im Inneren wegfallenden Gegendruck zusammenzufallen beginnt, wodurch sich Temperatur und Dichte erhöhen. In der nächsten Fusionsstufe entsteht Sauerstoff. Dabei wird wieder Energie frei, welche den Stern von innen mit Gegendruck versorgt und so den Zusammenfall aufhält. Weitere Fusionsstufen lassen den Stern weiter schrumpfen und so immer neue Elemente fusionieren. Beim Eisen, dem 26. Element, stoppt die Fusionskette, da Eisenatomkerne die höchste Bindungsenergie aller Atomkerne haben und weitere Fusionen Energie verbrauchen statt erzeugen würden. Bei der Explosion selbst treten allerdings Bedingungen auf, die zur Entstehung schwerer Elemente wie Gold, Blei, Thorium und Uran führen.

Die aufeinanderfolgenden Fusionsstufen laufen immer schneller ab. Während ein massereicher Stern von etwa acht Sonnenmassen einige zehn Millionen von Jahren braucht, seinen Wasserstoff zu Helium umzuwandeln, benötigt die folgende Umwandlung von Helium in Kohlenstoff „nur“ noch wenige Millionen Jahre. Die Dauer der letzten Phase, in der Silicium zu Eisen fusioniert, lässt sich in Stunden bis Tagen messen. Die Geschwindigkeit, mit der ein Stern den Brennstoff in seinem Inneren umsetzt, hängt von Temperatur und Dichte und damit indirekt vom Druck ab, der auf seinem Kern lastet und der durch die Gravitation verursacht wird. Eine wichtige Konsequenz dieses Zusammenhangs ist, dass ein Stern aus Schichten besteht, in denen nach außen hin die Umsetzungsgeschwindigkeit abnimmt. Auch wenn im Kern schon das Heliumbrennen einsetzt, erfolgt in den Schichten darüber noch das Wasserstoffbrennen. Die absolute Fusionsgeschwindigkeit im Kern steigt mit zunehmender Sternenmasse exponentiell an. Während ein Stern mit einer Sonnenmasse etwa 10 Milliarden Jahre benötigt, um die Fusionskette in seinem Kern bis zum Erliegen zu durchlaufen, liegt die Lebensdauer extrem schwerer Sterne mit etwa 100 Sonnenmassen nur noch in der Größenordnung von wenigen Millionen Jahren. Siehe Spätstadien der Sternentwicklung für einen genaueren Überblick.

Kernkollaps

Grafische Darstellung eines Kernkollapses
Der Überrest der Supernova 1987A
Falschfarbenbild des Krebsnebels, Überrest der Supernova aus dem Jahr 1054

Das Eisen, die „Asche“ des nuklearen Brennens, bleibt im Kern des Sterns zurück. Sterne, in denen Eisen durch Fusion synthetisiert wird, erzeugen immer einen Eisenkern, dessen Masse die Chandrasekhar-Grenze überschreitet. Im Falle eines Eisenkerns, des Vorläufers einer Typ II Supernova, liegt die Grenzmasse bei ca. 0,9 Sonnenmassen. Der entstehende Eisenkern überschreitet also die Grenzmasse und besitzt daher keine stabile Konfiguration. Der resultierende Kollaps des Zentralgebiets wird vornehmlich von zwei Prozessen unterstützt und beschleunigt: Erstens werden durch Photonen hochenergetischer Gammastrahlung Eisenatomkerne mittels Photodesintegration zerstört. Dabei entstehen α-Teilchen und Neutronen; die α-Teilchen können ihrerseits durch solche Photonen in ihre Kernbausteine, Protonen und Neutronen, zerlegt werden. Aufgrund der hohen Stabilität von Eisenkernen muss für diesen Prozess Energie aufgewendet werden. Zweitens werden im so genannten inversen β-Zerfall freie Elektronen durch Protonen eingefangen. Dabei entstehen weitere Neutronen, und Neutrinos werden freigesetzt (J. Cooperstein and E. A. Baron, 1990). Sowohl der Energieverlust durch die Photodesintegration als auch der Verlust freier Elektronen bewirken eine starke Reduktion des Drucks im Kern.

Der Kollaps des Zentralgebiets geschieht so schnell – innerhalb von Millisekunden –, dass die Einfallgeschwindigkeit bereits in 20 bis 50 km Abstand zum Zentrum die lokale Schallgeschwindigkeit des Mediums übersteigt. Die inneren Schichten können nur aufgrund ihrer großen Dichte die Druckinformation schnell genug transportieren. Die äußeren Schichten fallen als Stoßwelle in das Zentrum. Sobald der innere Teil des Kerns Dichten auf nuklearem Niveau erreicht, besteht er bereits fast vollständig aus Neutronen. Neutronenansammlungen besitzen ebenfalls eine obere Grenzmasse (Tolman-Oppenheimer-Volkoff-Grenze, je nach Modell ungefähr 2,7 bis 3 Sonnenmassen). Damit nun eine Supernova entstehen kann, darf diese Grenzmasse nicht von dem entstehenden Neutronenkern überschritten werden. Der Kern wird aufgrund quantenmechanischer Regeln (Entartungssdruck) inkompressibel, und der Kollaps wird fast schlagartig gestoppt. Dies bewirkt eine gigantische Druck- und Dichteerhöhung im Zentrum, so dass selbst die Neutrinos nicht mehr ungehindert entweichen können. Diese Druckinformation wird am Neutronenkern reflektiert und läuft nun wiederum nach außen. Die Druckwelle erreicht rasch Gebiete mit zu kleiner Schallgeschwindigkeit, die sich noch im Einfall befinden. Es entsteht eine weitere Stoßwelle, die sich jedoch nun nach außen fortbewegt. Das von der Stoßfront durchlaufene Material wird sehr stark zusammengepresst, wodurch das Material sehr hohe Temperaturen erlangt (Bethe, 1990). Ein großer Teil ihrer Energie wird beim Durchlaufen des äußeren Eisenkerns durch weitere Photodesintegration verbraucht. Da die nukleare Bindungsenergie des gesamten Eisens etwa gleich der Energie der Stoßwelle ist, würde diese ohne eine Erneuerung nicht aus dem Stern ausbrechen und keine Explosion erzeugen. Als Korrektur werden noch die Neutrinos als zusätzliche Energie- und Impulsquelle betrachtet. Normalerweise wechselwirken Neutrinos mit Materie so gut wie nicht. Jedoch bestehen in der Stoßfront so hohe Dichten, dass die Wechselwirkung der Neutrinos mit der Materie nicht mehr vernachlässigt werden kann. Da von der gesamten Energie der Supernova der allergrößte Teil in die Neutrinos geht, genügt eine relativ geringe Absorption, um den Stoß wiederaufleben und aus dem kollabierenden Eisenkern ausbrechen zu lassen. Nach Verlassen des Eisenkerns, wenn ihre Temperatur genug abgesunken ist, gewinnt die Druckwelle zusätzliche Energie durch erneut einsetzende Fusionsreaktionen.

Die extrem stark erhitzten Gasschichten, die neutronenreiches Material aus den äußeren Bereichen des Zentralgebiets mit sich reißen, erbrüten dabei im so genannten r-Prozess (r von engl. rapid, „schnell“) schwere Elemente jenseits des Eisens, wie zum Beispiel Kupfer, Germanium, Silber, Gold oder Uran. Etwa die Hälfte der auf Planeten vorhandenen Elemente jenseits des Eisens stammen aus solchen Supernovaexplosionen, während die andere Hälfte im s-Prozess von masseärmeren Sternen erbrütet und in deren Riesenphase ins Weltall abgegeben wurde.

Hinter der Stoßfront dehnen sich die erhitzten Gasmassen schnell aus. Das Gas gewinnt nach außen gerichtete Geschwindigkeit. Einige Stunden nach dem Kollaps des Zentralbereichs wird die Oberfläche des Sterns erreicht, und die Gasmassen werden in der nun sichtbaren Supernovaexplosion abgesprengt. Die Hülle der Supernova erreicht dabei Geschwindigkeiten von Millionen Kilometern pro Stunde. Neben der als Strahlung abgegebenen Energie, wird der Großteil von 99 % der beim Kollaps freigesetzten Energie in Form von Neutrinos abgegeben. Diese verlassen den Stern, unmittelbar nachdem die Dichte der anfänglich undurchdringlichen Stoßfront genügend klein geworden ist. Da sie sich fast mit Lichtgeschwindigkeit bewegen, können sie von irdischen Detektoren einige Stunden vor der optischen Supernova gemessen werden, wie etwa bei Supernova 1987A.

Ein weiteres „Frühwarnsignal“ für das Aufleuchten einer Kernkollaps-Supernova ist ein so genannter Röntgen-Outburst. Dieser tritt auf, wenn die Wellen der Stoßfront die Sternoberfläche erreichen und in das interstellare Medium ausbrechen – Tage bevor der Helligkeitsausbruch im sichtbaren Licht beobachtet wird. Erstmals wurde ein solches Röntgensignal im Januar 2008 mit dem NASA-Satelliten Swift bei der Supernova SN 2008D beobachtet.[2]

Supernovae des Typs II werden, da sie durch den Kollaps des Zentralgebiets bewirkt werden, auch als hydrodynamische Supernovae bezeichnet. Das dargelegte Szenario beruht auf einem weitgehenden Konsens in der Wissenschaft, dass Supernovaexplosionen von massereichen Sternen prinzipiell so ablaufen. Es gibt jedoch noch kein geschlossenes funktionierendes, physikalisches Modell einer Supernovaexplosion, dem alle sich damit beschäftigenden Wissenschaftler zustimmen würden.

Eine Supernova in der Nähe belebter Planeten (Umkreis von etwa 50 Lichtjahren) hätte aufgrund der Strahlung verheerende Auswirkungen auf das dortige Leben.

Kompakte Objekte

Die Form des Überrestes, der von dem Stern zurückbleibt, hängt von dessen Masse ab. Nicht die gesamten äußeren Schichten werden bei der Supernovaexplosion fortgeschleudert. Das zurückbleibende Gas akkretiert auf den kollabierten Kern im Zentrum, der nahezu vollständig aus Neutronen besteht. Das nachfallende Gas wird durch die oben beschriebenen Prozesse ebenfalls in Neutronen zerlegt, so dass ein Neutronenstern entsteht. Wird der Stern durch das nachfallende Material noch schwerer (mehr als etwa 3 Sonnenmassen), so kann die Gravitationskraft auch den durch das Pauli-Prinzip bedingten Gegendruck überwinden, der in einem Neutronenstern die Neutronen gegeneinander abgrenzt und diesen so stabilisiert (siehe Entartete Materie). Der Sternenrest stürzt endgültig zusammen und bildet ein Schwarzes Loch, aus dessen Schwerkraftfeld keine Signale mehr entweichen können. Neuere Beobachtungen legen die Vermutung nahe, dass es eine weitere Zwischenform gibt, die so genannten Quarksterne, deren Materie aus reinen Quarks aufgebaut ist.

Neutronensterne rotieren aufgrund des Pirouetteneffekts oft mit sehr hoher Geschwindigkeit von bis zu 1000 Umdrehungen pro Sekunde, da der Drehimpuls bei dem Kollaps erhalten bleibt.

Die hohe Drehgeschwindigkeit erzeugt ein Magnetfeld, das mit den Teilchen des abgestoßenen Gasnebels in Wechselwirkung tritt und so von der Erde aus registrierbare Signale erzeugt. Im Falle von Neutronensternen spricht man dabei von Pulsaren.

Paarinstabilitätssupernova

Eine Variante des Kernkollapsszenarios besteht in der Paarinstabilitätssupernova[3] (pair instability supernova, PISN). In diesem Regime gelangt der Stern nach dem Ende des Heliumbrennens in Temperatur- und Dichtebereiche, in denen die Photonenenergien zur Erzeugung von Elektron-Positron-Paaren führen. Dies führt zu einer Verringerung des Strahlungsdrucks und damit zu einer weiteren schnellen Erhöhung der Dichte – und damit der Temperatur – des Kerns, bis es zu einem explosionsartigen Einsetzen des Sauerstoff- und Siliciumbrennens kommt, das einen erneuten Gegendruck gegen den Gravitationsdruck aufbaut. Abhängig von der Größe des Gravitationsdrucks – und damit der Masse des Kerns – kann diese Kernexplosion den weiteren Kollaps verhindern oder nur verlangsamen. Bei einer PISN entsteht kein kompakter Überrest, sondern der Stern wird vollständig zerrissen. Die dabei freiwerdenden Energien liegen mit bis zu 1053 erg um etwa einen Faktor 100 über denen einer "gewöhnlichen" Kernkollapssupernova.

Modellrechnungen[3] für verschwindende Metallizität und ohne Berücksichtigung einer möglichen Rotation oder von Magnetfeldern liefern für das Einsetzen der Paarinstabilität eine kritische Masse des Heliumkerns von 64 Sonnenmassen. Wird die Masse des Heliumkerns größer als 133 Sonnenmassen, so kann die Kernexplosion den weiteren Kollaps nicht verhindern, der somit weiter zu einem Schwarzen Loch kollabiert. Rechnet man diese Helium-Kernmassen auf die notwendige Gesamtmasse eines Hauptreihensterns (unter Vernachlässigung von Massenverlusten) hoch, so ergibt sich für die PISN ein Massenbereich von etwa 140 bis 260 Sonnenmassen. Aus diesem Grund wird dieses Szenario im heutigen Universum als unrealistisch angesehen und vorwiegend bei der ersten Sterngeneration in Betracht gezogen – dort könnte dieser Mechanismus jedoch eine bedeutende Rolle bei der Anreicherung des intergalaktischen Mediums mit schwereren Elementen gespielt haben.

Einen Sonderfall stellt die Supernova SN 2006gy in der Galaxie NGC 1260 dar, die am 18. September 2006 im Rahmen des Texas Supernova Search entdeckt wurde: die absolute Helligkeit von SN 2006gy lag um mehr als eine Magnitude über der anderer Supernovae. Die Entdecker interpretieren diese etwa 240 Millionen Lichtjahre entfernte Supernova deshalb als ersten Kandidaten, für den der Paarinstabilitätsmechanismus als Erklärung möglich sein könnte – allerdings sind weder das bisherige Datenmaterial als auch die theoretischen Modelle ausreichend, um hier eine eindeutige Entscheidung treffen zu können.

Thermonukleare Supernovae vom Typ Ia

Schematische Entwicklung der Vorgänger zur SN Typ Ia

Eine Supernova vom Typ Ia entsteht nach dem derzeit bevorzugten Modell nur in Doppelsternsystemen, in denen der eine Stern ein Weißer Zwerg, der andere ein Roter Riese ist. Der Weiße Zwerg akkretiert im Laufe der Zeit Gas aus der ausgedehnten Hülle seines Begleiters, wobei es zu mehreren Nova-Ausbrüchen kommen kann, bei dem der Wasserstoff des akkretierten Gases fusioniert und Fusionsprodukte zurück bleiben. Das setzt sich so lange fort, bis seine Masse die Chandrasekhar-Grenze überschreitet und er durch seine Eigengravitation zu kollabieren beginnt. Im Gegensatz zum Eisenkern eines SN-II-Vorläufersterns enthält der Weiße Zwerg jedoch große Mengen an fusionsfähigem Kohlenstoff, sodass der Kollaps zum Neutronenstern durch eine rapide einsetzende Kernfusion verhindert wird, und der Stern explodiert. Daher wird dieses Phänomen auch als thermonukleare Supernova bezeichnet.

Unterschiedlichen theoretischen Modellen zufolge kann die Kernfusion sowohl als Detonation als auch als Deflagration ablaufen. Neueren Arbeiten (Gamezo, Khokhlov & Oran, 2004) zufolge, die unter Experten heftig diskutiert werden, ist das wahrscheinlichste Szenario eine anfängliche Deflagration, die in eine Detonation übergeht. Andere Theorien sprechen von Magnetfeldern, aus denen die Explosionsenergie entnommen wird.

Die auftretende Supernova-Explosion ist immer innerhalb einer gewissen Stärke, da die kritische Masse sowie die Zusammensetzung des Weißen Zwerges konstant sind. Bei einer Supernova-Explosion vom Typ Ia bleibt kein kompaktes Objekt übrig – die gesamte Materie wird als Supernovaüberrest in den Weltraum geschleudert. Der Begleitstern wird zu einem so genannten „Runaway“-Stern (engl. „Flüchtender“), da er mit seiner – normalerweise hohen – Orbitalgeschwindigkeit davongeschleudert wird.

Entfernungsmessungen mit Hilfe von Supernovae

Da die Strahlung besonders im späteren Verlauf einer Supernova vom Typ Ia größtenteils durch den radioaktiven Zerfall von 56Ni zu 56Co und diesem zu 56Fe gespeist wird, wobei die Halbwertszeiten etwa 6 beziehungsweise 77 Tage betragen (diese Theorie stellten zuerst Fred Hoyle und William Alfred Fowler im Jahre 1960 auf), ist die Form der Lichtkurve stets annähernd gleich. Durch diese Eigenschaften einer so genannten Standardkerze lassen sich anhand solcher Supernova-Explosionen relativ genaue Entfernungsbestimmungen im Weltall vornehmen, wobei auch die Zeitskala der Lichtkurve neben den Spektrallinien zur Bestimmung der Rotverschiebung verwendet werden kann, da sich bei einer Rotverschiebung von z. B. 2 auch der zeitliche Ablauf für den Beobachter um diesen Faktor verlängert. Die Idee dazu geht auf Fritz Zwicky zurück. Durch die Entfernungsmessungen von Supernova-Explosionen, die sich vor ca. 7 Milliarden Jahren ereigneten, kann man die beschleunigte Expansion des Universums (siehe z. B. Hubble-Konstante) belegen. Um Supernovae wirklich als Standardkerzen verwenden zu können, müssen die Explosionsmechanismen jedoch noch besser erforscht und verstanden werden.

Supernovaüberreste

Das bei der Supernova ausgeworfene Material bildet einen Emissionsnebel, den so genannten „Supernovaüberrest“, im Gegensatz zum eventuell entstehenden Überrest des Kernkollaps, der in der Astrophysik als „kompaktes Objekt“ bezeichnet wird. Der wohl bekannteste Supernovaüberrest ist der Krebsnebel, der bei der Explosion der SN1054 ausgestoßen wurde. Diese Supernova ließ auch ein kompaktes Objekt, einen Pulsar, zurück.

Computersimulationen von Supernova-Explosionen

Seit Beginn des 21. Jahrhunderts ist es möglich, mittels Computermodellen Supernova-Explosionen einigermaßen realitätsgetreu nachzustellen. Bis dahin bereitete vor allem die Modellierung von thermonuklearen Explosionen Probleme, weil die dafür nötige hohe Brenngeschwindigkeit von einigen tausend Kilometern pro Sekunde nicht erreicht wurde. Eine Lösung des Problems deutet sich an, seit man mit der Berechnung von Flammenturbulenzen ähnlich den Vorgängen in einem Ottomotor arbeitet. Weiterhin schwierig ist die Berechnung der zugleich in sehr großen wie in sehr kleinen Maßstäben ablaufenden Vorgänge sowie die Tatsache, dass die Vorgänge möglichst dreidimensional darzustellen sind.

Die bislang aufwändigste Simulation wurde im Jahre 2004 am MPI für Astrophysik in Garching bei München durchgeführt. Dabei wurden in jedem Simulationsschritt 512³ Gitterpunkte berechnet, was einer Auflösung von wenigen Kilometern entspricht. Eine ganze Simulation dauerte 15.000 Prozessorstunden. Die Simulationen zeigen, dass die Entstehung turbulenter blasenartiger Strukturen wahrscheinlich ist, jedoch stimmen die Ergebnisse mit der Natur noch nicht befriedigend überein.

Andere Computermodelle beziehen auch die von emittierten Neutrinos gebildete Stoßfront mit ein, hier sind jedoch die Unzulänglichkeiten noch größer, was vor allem an der extrem hohen Zahl von Rechenoperationen liegt.

Gefahren für die Erde

Da das Ereignen einer Supernova in Erdnähe katastrophale Folgen für das Leben auf dem Planeten hätte, empfinden manche Menschen den Gedanken an solch ein Ereignis als sehr beunruhigend – ebenso wie zum Beispiel die Möglichkeit der Nachbarschaft eines Schwarzen Loches . Da aber ein Stern vor einer Supernova bestimmte Phasen durchläuft, kann exakt vorhergesagt werden, ob ein Stern kurz vor einer Supernova steht oder nicht. Im Bereich um die Erde, in welcher eine Supernova Folgen für das Leben hätte, gibt es keinen Stern, der in absehbarer Zeit eine Supernova auslösen könnte. Alle Beobachtungen von Supernovae werden in anderen Galaxien oder ausreichend weit entfernten Teilen der Milchstraße gemacht.

Siehe auch

Einzelnachweise

  1. P. Frank Winkler, G. Gupta: The SN 1006 Reminant: Optical Proper Motions, Deep Imaging, Distance, and Brightness at Maximum. In: The Astrophysical Journal. 585, 2003, S. 324-335
  2. Roger Chevalier: Astronomy: Supernova bursts onto the scene, Nature 453, 462–463 (22 May 2008), doi:10.1038/453462a
  3. a b Heger, Woosley, Baraffe, Abel: Evolution and Explosion of Very Massive Primordial Stars, Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology: Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference Held in Garching, Germany, 6-10. August 2001, ESO ASTROPHYSICS SYMPOSIA. ISBN 3-540-43769-X. Edited by M. Gilfanov, R. Sunyaev, and E. Churazov. Springer-Verlag, 2002, p. 369 preprint (pdf)

Literatur

  • V. N. Gamezo, A. M. Khokhlov & E. S. Oran, Deflagrations and Detonations in Thermonuclear Supernovae, Physical Review Letters, vol. 92, issue 21, id. 211102, 05/2004 (auch astro-ph/0406101)
  • R. Dean et al., A Comparative Study of the Absolute Magnitude Distributions of Supernovae, The Astronomical Journal, Vol. 123, Issue 2, pp. 745-752, 02/2002 (auch astro-ph/0112051)
  • D.H. Clark & F.R. Stephenson, "The Historical Supernovae", Pergamon Press, Oxford u.a., 1977, ISBN 0-08-020914-9
  • J. Cooperstein & E. Baron, Supernovae: The Direct Mechanism and the Equation of State, in Supernovae edited by A. G. Petschek, Springer 1990
  • H. Bethe, Supernova mechanisms, Reviews of Modern Physics, Vol. 62, No.4, October 1990
  • T.R. Young & D. Branch, Absolute lightcurves of type II supernovae, ApJ 342, L79-L82 (1989)
  • W. Hillebrandt, H.-T. Janka und E. Müller, Rätselhafte Supernova-Explosionen, Spektrum der Wissenschaft, Ausgabe 7/2005, S. 36ff
  • Thorsten Dambeck, Todesschrei im Röntgenlicht, Spektrum der Wissenschaft, Ausgabe 9/2008, S. 14 - 15, ISSN 0170-2971
  • Richard F.Stephenson(et al.): Historical supernovae and their remnants. Clarendon Press Oxford 2004, ISBN 0-19-850766-6
  • Wolfgang Hillebrandt: From twilight to highlight - the physics of supernovae. Springer, Berlin 2003, ISBN 3-540-00483-1
  • Gerald North: Observing variable stars, novae, and supernovae. Cambridge Univ. Press, Cambridge 2004, ISBN 0-521-82047-2
  • Peter Höflich (et al.): Cosmic explosions in three dimensions - asymmetries in supernovae and gamma-ray bursts. Cambridge Univ. Press, Cambridge 2004, ISBN 0-521-84286-7

Weblinks

Videos


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • PISN — Die Supernova 1994D in der Galaxie NGC 4526 (heller Punkt links unten) Bild der Supernova 1987A nach ca. 20 Jahren …   Deutsch Wikipedia

  • Paarinstabilitäts-Supernova — Die Supernova 1994D in der Galaxie NGC 4526 (heller Punkt links unten) Bild der Supernova 1987A nach ca. 20 Jahren …   Deutsch Wikipedia

  • Supernova — Die Supernova 1994D in der Galaxie NGC 4526 (heller Punkt links unten) …   Deutsch Wikipedia

  • Supernovae — Die Supernova 1994D in der Galaxie NGC 4526 (heller Punkt links unten) Bild der Supernova 1987A nach ca. 20 Jahren …   Deutsch Wikipedia

  • S-Doradus-Stern — Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und… …   Deutsch Wikipedia

  • S-Doradus-Veränderlicher — Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und… …   Deutsch Wikipedia

  • S Doradus Variabler — Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und… …   Deutsch Wikipedia

  • Hyperriese — Hertzsprung Russell Diagramm Spektralklasse Braune Zwerge …   Deutsch Wikipedia

  • Leuchtkräftiger Blauer Veränderlicher — Der Pistolenstern und der in einem LBV Ausbruch ausgestossene Nebel. Falschfarbenaufname des Hubble Space Teleskop. Quelle: NASA Leuchtkräftiger Blauer Veränderlicher (kurz LBV; engl. luminous blue variable), nach dem Stern S Doradus auch S… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”