Saure Salze

Saure Salze

Als Salze bezeichnet man chemische Verbindungen, die aus positiv geladenen Ionen, den so genannten Kationen und negativ geladenen Ionen, den so genannten Anionen aufgebaut sind. Zwischen diesen Ionen liegen ionische Bindungen vor. Bei anorganischen Salzen werden die Kationen häufig von Metallen und die Anionen häufig von Nichtmetallen oder deren Oxiden gebildet. Als Feststoff bilden sie gemeinsam ein Ionengitter. Als organische Salze bezeichnet man alle Verbindungen, bei denen mindestens ein Anion oder Kation eine organische Verbindung ist. Verbindungen wie Chlorwasserstoff und Natriumhydroxid, die in wässriger Lösung entweder nur Protonen (H3O+) als Kationen oder nur Hydroxide (OH) als Anionen bilden, nennt man nicht Salze; ihre Wirkung als Säure bzw. Base steht im Vordergrund.

Inhaltsverzeichnis

Anorganische Salze

Kugelgitter: Struktur von Natriumchlorid; die Natriumionen sind grün, die Chloridionen blau dargestellt
Die Struktur des Sulfat-Anions (SO42−)

Im engsten Sinn versteht man unter Salz das Natriumchlorid (NaCl, Speisesalz). Im weiten Sinn bezeichnet man alle Verbindungen, die wie NaCl aus Anionen und Kationen aufgebaut sind, als Salze. Natriumchlorid ist aus den Kationen Na+ und Anionen Cl aufgebaut. Das Salz Calciumchlorid (CaCl2) wird von Ca2+ und Cl gebildet. Die Formeln NaCl und CaCl2 sind die Verhältnisformeln der Verbindungen (Na:Cl=1:1, bzw. Ca:Cl=1:2). Die Verhältnisformel eines Salzes wird durch die Ladungszahl der Ionen bestimmt, da sich positive und negative Ladungen kompensieren müssen. Verhältnisformeln stehen im klaren Gegensatz zu Formeln von individuellen Verbindungen wie Wasser (H2O) oder Methan (CH4), die Moleküle sind. Bei anorganischen Salzen liegen zwischen den Ionen Ionenbindungen vor. Eine sehr hohe Zahl von Ionen bilden unter Einhaltung der jeweiligen Verhältnisformel ein Ionengitter mit einer bestimmten Kristallstruktur. Die Abbildung rechts zeigt einen kleinen Ausschnitt aus dem Aufbau von Natriumchlorid. Da recht viele verschiedene Kationen und Anionen existieren, sind auch eine hohe Zahl unterschiedlicher Salze bekannt. Einige der Ionen sind unten in den Tabellen aufgelistet. Anders als das Halogenid Cl, bilden andere Nichtmetalle oxidische Anionen. Stickstoff kann unter anderem das Nitrat-Anion (NO3) bilden. Das Sulfat-Anion (SO42−) ist auch ein oxidisches Anion, trägt aber zwei negative Ladungen. Bei oxidischen Anionen ist der Sauerstoff mit dem anderen beteiligten Element fest mit kovalenten Bindungen verbunden. Ionische Bindungen liegen nur zwischen den Anionen und Kationen vor. Unter den Nitraten ist beispielsweise Natriumnitrat (NaNO3), unter den Sulfaten Natriumsulfat (Na2SO4) bekannt. Die Kationen werden meist von Metallen gebildet. Sie können ein- oder mehrwertig sein, also eine oder mehrere positive Ladungen tragen. Salze, die von Metallkationen gebildet werden, nennt man gelegentlich Metallsalze.

Beispiele von Kationen und Anionen

Kationen
einwertige zweiwertige dreiwertige
Kalium, K+ Calcium, Ca2+ Eisen(III), Fe3+
Natrium, Na+ Magnesium, Mg2+ Aluminium, Al3+
Ammonium, NH4+ Eisen(II), Fe2+
Anionen
einwertige zweiwertige oxidische metallische
Fluoride, F Oxide, O2− Carbonate, CO32− Chromate, CrO42−
Chloride, Cl Sulfide, S2− Sulfate, SO42− Permanganate, MnO4
Bromide, Br Phosphate, PO43− komplexe
Iodide, I Nitrate, NO3 Hexacyanoferrate(II), [FeII(CN)6]4−

Eigenschaften von Salzen

Lösen von Natriumchlorid in Wasser: Rechts sind von Wassermolekülen ummantelte (hydratisierte) Ionen dargestellt
  • Viele Salze sind bei Raumtemperatur Feststoffe mit relativ hohen Schmelzpunkten. Etliche Salze sind recht hart und spröde und haben glatte Bruchkanten bei mechanischer Bearbeitung. Diese Eigenschaften sind recht typisch für Feststoffe, die durch ein Ionengitter aufgebaut sind und daher Kristalle bilden. Aber nicht jeder kristalline Stoff ist ein Salz. So bildet Zucker (Saccharose) auch Kristalle, hat aber kein Ionengitter und zählt nicht zu den Salzen.
  • Zahlreiche Salze sind löslich in Wasser und unlöslich in den meisten organischen Lösungsmitteln. Bei wasserlöslichen Salzen überwindet das Wasser die Gitterenergie des Ionengitters durch Hydratation. Ist die Hydrationsenergie ähnlich groß oder größer als die Gitterenergie, ist das Salz mäßig oder gut löslich. In Lösungen sind die einzelnen Ionen von Wassermolekülen recht eng und intensiv ummantelt. Als Reaktion wird dies in der Chemie oft so dargestellt:
    \mathrm{ NaCl_{(s)}\ \longrightarrow\ Na^+_{(aq)}\ +\ Cl^{-}_{(aq)} }
    Das (s) weist auf einen Feststoff hin und (aq) markiert, dass das Ion hydratisiert vorliegt.
  • Das Lösen von Salzen in Wasser kann den pH-Wert der jeweiligen Lösung verändern. Beeinflusst das Salz den Wert nicht, spricht man von neutralen Salzen. Zu den neutralen Salzen zählt auch das Natriumchlorid. Andere Salze heben oder senken den pH-Wert. Man spricht von basischen oder sauren Salzen. Wie ein bestimmtes Salz reagiert, lässt sich nur schwierig aus der Zusammensetzung der Verbindung abschätzen. Grundsätzlich gilt jedoch: Anionen (Säurereste) starker Säuren reagieren meist neutral. Säurereste von schwachen Säuren reagieren meist basisch. Beispielhaft für Salze, von denen mehrprotonige Säuren bekannt sind, ist das Verhalten der Phosphate.
  • Trockene Salzkristalle sind elektrische Isolatoren. Salzschmelzen und wässrige Lösungen leiten hingegen den elektrischen Strom aufgrund ihrer frei beweglichen Ionen als Ladungsträger; sie sind Elektrolyte.

Weitere Kationen und Anionen

  • Unter den Kationen existieren jedoch auch aus Nichtmetallen gebildete Ionen. Das Ammonium-Kation (NH4+) bildet beispielsweise das Salz Ammoniumsulfat ((NH4)2SO4). Zu den Ammoniumverbindungen existieren analoge, organische Verbindungen (Quartäre Ammoniumverbindungen), die weiter unten näher beschrieben werden.
  • In Salzen kann auch das Proton (H+) als Kation auftreten, so z. B. das Salz Natriumhydrogensulfat (NaHSO4). Sind nur H+-Ionen vorhanden, spricht man nicht mehr von Salzen. Bei den Sulfaten wäre die Verbindung nur mit Protonen die Schwefelsäure (H2SO4). Analoge Salze sind auch unter den Phosphaten bekannt: Natriumphosphat, Dinatriumhydrogenphosphat, Natriumdihydrogenphosphat. Sind nur Protonen vorhanden, nennt man die Verbindung Phosphorsäure (H3PO4).
  • Metalloxide bilden einen großen Teil der Erdkruste und können auch als Salze betrachtet werden. Das Anion O2− (Oxid-Ion) tritt als solches jedoch nur bei Salzen im geschmolzenen Zustand auf, im festen Zustand oder in deren wässrigen Lösungen ist es nicht bekannt. Dem Metall (M) wird bevorzugt eine Oxidationszahl (Wertigkeit) zugeordnet, anstatt von Kationen zu sprechen. Man spricht von ein-, zwei-, drei-, und mehrwertigen Metallen (MI, MII, MIII). Dem Oxid-Ion wird die Wertigkeit O-II zugeordnet. Die Wertigkeit der Metalle bestimmt damit die Verhältnisformel der jeweiligen Verbindung: MI2O, MIIO, MIII2O3. Gilt ein Oxid als „löslich“, findet eine spezifische chemische Reaktion statt, zum Beispiel:
    \mathrm{ Na_2O_{(s)} + H_2O \longrightarrow 2\ Na^+_{(aq)} + 2\ OH^-_{(aq)} }
    Natriumoxid reagiert mit Wasser unter Bildung von Hydroxid-Ionen zu Natronlauge.
    Ähnlich reagiert Calciumoxid (CaO), auch gebrannter Kalk genannt, zu gelöschtem Kalk (Ca(OH)2). Sehr viele Oxide reagieren nicht mit Wasser. Das Eisen(III)-oxid (Fe2O3) (Rost) ist keine wasserlösliche Verbindung.
  • Sulfide. Mineralien sind in der Natur häufig als Sulfide (S2−) zu finden, z. B. Pyrit und Kupferglanz. Auch Sulfide kann man als Salze betrachten. Natriumsulfid (Na2S) ist ein lösliches Salz, die meisten Sulfide, wie Zinksulfid (ZnS) und Kupfer(II)-sulfid (CuS), sind in Wasser so gut wie unlöslich. In der analytischen Chemie wird die unterschiedliche (schlechte) Löslichkeit verschiedener Metallsulfide zur Trennung der Elemente verwendet (im Trennungsgang der Schwefelwasserstoffgruppe).
  • Einige Übergangsmetalle können nicht nur Kationen, sondern auch Anionen als Oxide bilden. So kann Chrom die Chromate ([CrO4]2−), das Anion im Kaliumchromat (K2[CrO4]) und Mangan die Permanganate ([MnO4]), das Anion in Kaliumpermanganat (K[MnO4]) bilden.
Die Struktur des Hexacyanoferrat(II)-Anion
  • Als komplexe Salze bezeichnet man Salze, bei denen unter Mitwirkung von Molekülen eigenständige (stabile) Ionen vorliegen – im Gegensatz zu Ionen wie [CrO4]2−, die aus Atomen bestehen. Bei Kaliumhexacyanoferrat(II) (K4[Fe(CN)6]) bildet das Eisenion Fe2+ zusammen mit sechs Cyanid-Gruppen (CN) gemeinsam ein stabiles Anion mit vier negativen Ladungen. Das Hexacyanoferrat(II)-Anion zählt somit zu den Komplexen. Im Salz liegen ionische Bindungen zwischen Kaliumionen und dem Hexacyanoferrat(II)-Anion vor. Analog bildet das Eisenion Fe3+ Kaliumhexacyanoferrat(III) (K3[Fe(CN)6]) ebenfalls ein Komplexsalz. Bei K3[Fe(CN)6] bildet das Eisenion Fe3+ zusammen mit sechs Cyanid-Gruppen (CN) gemeinsam ein stabiles Anion mit drei negativen Ladungen.

Kristallwasser

Viele Salze enthalten neben den Ionen in bestimmten Mengen auch Wassermoleküle, das so genannte Kristallwasser. Es wird in der Verhältnisformel mit angegeben, wie hier im Beispiel von Natriumsulfat-Dekahydrat: Na2SO4 · 10 H2O.

Doppelsalze

Neben Salzen mit nur einer Art von Kationen (M), sind auch Salze mit zwei verschiedenen Kationen bekannt. Man nennt diese Salze Doppelsalze, wie die Alaune mit der allgemeinen Zusammensetzung MIMIII(SO4)2. Beispiel: Aluminiumkaliumsulfat-Dodecahydrat (KAl(SO4)2 · 12 H2O).

Grenzen des Begriffs Salze

  • Stoffe werden als Salze bezeichnet, wenn ionische Bindungen zwischen den Teilchen der Verbindung vorliegen. Ob dieser Bindungstyp vorliegt, lässt sich jedoch nicht ohne weiteres feststellen. Während bei Calciumoxid (CaO) ionische Bindungen wirken, liegen bei Chrom(VI)-oxid (CrO3) nur kovalente Bindungen zwischen Cr und O vor; es sollte daher nicht mehr als Salz bezeichnet werden. Aus diesem Grund ist es oft geschickter, bei Oxiden nicht von Salzen, sondern allgemein von Metalloxiden zu sprechen.
  • Salze werden in der Regel als chemische Verbindungen aufgefasst, da sie eine definierte Zusammensetzung aus verschiedenen chemischen Elementen haben. Es sind jedoch Mischkristalle aus zwei Salzen bekannt, die nicht stöchiometrisch zusammengesetzt sind: So bildet Kaliumpermanganat (K[MnO4]) mit Bariumsulfat (Ba[SO4]) in fast beliebigen Mengenverhältnissen Mischkristalle (wenn auch nur bis zu einem bestimmten Maximum an Bariumsulfat), da die Komponenten ähnliche Kristallstrukturen und Gitterabstände aufweisen. Eine chemische Ähnlichkeit der beteiligten Verbindungen oder eine gleiche Wertigkeit ist für die Bildung von Mischkristallen nicht unbedingt nötig.

Organische Salze

Neben den oben beschriebenen anorganischen Salzen gibt es auch zahlreiche Salze organischer Verbindungen. Die Anionen dieser Salze stammen von den organischen Säuren ab. Wichtig sind hier die Salze der Carbonsäuren, wie beispielsweise die Essigsäure, von der viele Salze, die so genannten Acetate (CH3COO) bekannt sind. So kann sich mit Na+ das Salz Natriumacetat oder mit Cu2+ das Kupferacetat bilden. Essigsäure ist eine Monocarbonsäure (hat nur eine -COOH-Gruppe) und bildet nur einwertige Anionen. Zitronensäure ist eine Tricarbonsäure (hat drei -COOH-Gruppen) und kann dreiwertige Anionen bilden; ihre Salze nennt man Citrate. Bekannt sind beispielsweise die Salze Natriumcitrat und Calciumcitrat. Viele Acetate und Citrate bilden Kristalle, was aber nicht der eigentliche Grund ist, sie Salze zu nennen. Der wirkliche und einzige Grund liegt am Vorhandensein von ionischen Bindungen zwischen Anionen und Kationen. Innerhalb der Ionen von organischen Verbindungen liegen kovalente Bindungen vor.

Praktische Bedeutung haben die Salze der Carbonsäuren, die zu den Fettsäuren zählen. Die Natrium- oder Kaliumsalze der Fettsäuren nennt man Seifen. In Seifen liegen Stoffgemische verschiedener Fettsäuresalze vor. Praktische Verwendung finden sie als Kernseife bzw. Schmierseife. Als konkretes Beispiel bildet die Palmitinsäure Salze, welche Palmitate genannt werden. Salze, die auf so großen organischen Molekülen beruhen, sind in der Regel nicht kristallin.

Analog zu den anorganischen Sulfaten (SO42−) gibt es auch organische Sulfate (R-O-SO3), wie Natriumlaurylsulfat, welche als Tenside in Shampoos und Duschgelen Verwendung finden. Auch von Alkoholen sind Salze, die Alkoholate, bekannt. Alkohole sind äußerst schwache Säuren und werden daher fast nie so genannt. Unter aggressiven Reaktionsbedinungen lassen sich Verbindungen der Form R-OM+ (M = Metall) gewinnen. In Analogie zu vielen anorganischen Oxiden (MO) reagieren Alkoholate bei Kontakt mit Wasser unter Hydrolyse und es bildet sich die entsprechenden Alkohole.

Hydrolyse oxidischer Salze
Natriumethanolat C2H5ONa + H2O → C2H5OH + Na+ + OH
Natriumoxid Na2O + H2O → 2 Na+ + 2 OH
Die Struktur von Alkylammonium- Verbindungen

Unter den organischen Kationen haben die zum Ammonium-Kation (NH4+) analogen Verbindungen Bedeutung. Man nennt sie allgemein quartäre Ammoniumverbindungen. Bei diesen Verbindungen trägt das Stickstoffatom in der Regel vier Alkylgruppen (R-) und eine positive Ladung. Die Alkylammoniumverbindung Cetyltrimethylammoniumbromid zum Beispiel ist eine organischen Ammoniumverbindung, bei der ein Bromatom als Anion vorliegt. Praktische Bedeutung haben Ammoniumverbindungen mit drei kurzen und einer langen Alkylgruppe, da diese Kationen in wässriger Lösung die Eigenschaft von Tensiden zeigen. Verbindungen dieser Art spielen auch eine wichtige Rolle im Stoffwechsel von Lebewesen, wie etwa das Cholin.

Prinzipiell kann jedes organische Amin durch Aufnahme eines Protons (H+) zu einem Kation werden. Analog zu der Reaktion von Ammoniak (NH3) zum Ammonium-Ion (NH4+) reagiert beispielsweise ein primäres Amin (R-NH2; R = organischer Rest) zum Kation R-NH3+. Da solche Verbindungen meist polarer und daher leichter wasserlöslich sind als die ursprünglichen Stoffe, werden zum Beispiel stickstoffhaltige Arzneistoffe (Pharmawirkstoffe) durch Versetzen mit Salzsäure zu Salzen, den so genannten Hydrochloriden überführt. Dies erleichtert ihre Aufnahme in den Körper. Hydrochloride lassen sich im Gegensatz zu den Aminen leichter durch Umkristallisation reinigen. Analog bilden Amine mit Bromwasserstoff Hydrobromide und mit Fluorwasserstoff Hydrofluoride.

Neben Molekülen, die eine positive oder negative Ladung tragen, existieren auch Moleküle, die über eine negative und positive Ladung verfügen. Man nennt sie Innere Salze oder auch Zwitterionen. Die Stoffgruppe der Betaine zählt zu den inneren Salzen, deren einfachste Verbindung das Betain ist.

Die Aminosäuren verfügen über eine Carboxyl-Gruppe (-COOH) und eine Amino-Gruppe (-NH2) und können so sauer und basisch reagieren. In einer inneren Neutralisation bilden sich eine anionische (-COO) und eine kationische (-NH3+) Gruppe und damit ein Zwitterion. Die einfachste Aminosäure ist das gut in Wasser lösliche Glycin. Zwitterionen zeigen im Gegensatz zu anderen in Wasser gelösten Ionen eine schlechte (keine) elektrische Leitfähigkeit. (Ampholyte)

Beispiele organischer Kationen und Anionen

Anionen organischer Verbindungen
Stoffgruppe Beispiel Struktur
Carbonsäuren Acetate
Palmitate
Citrate
organische Sulfate Laurylsulfate
Alkoholate Ethanolate
Kationen organischer Verbindungen
Stoffgruppe Beispiel Struktur
quartäre
Ammonium-
verbindungen
Cetyltrimethylammonium
Cholin
organische
Ammonium-
Verbindungen
Salze des Anilins,
z.B. Anilin-Hydrochlorid
Innere Salze: Kation und Anion in einem Molekül
Stoffgruppe Beispiel Struktur
Betaine Betain
Aminosäuren Alanin

Herstellung von anorganischen Salzen

Reaktionen von Säuren und Basen

Salze entstehen bei der Reaktion von Säuren mit Basen ((grch. basis) Arrhenius: Basen sind die Basis für Salze). Dabei bildet das Oxonium-Ion der Säure mit dem Hydroxid-Ion der Base Wasser (Neutralisation). Einige Salze sind schwer löslich in Wasser und bilden direkt den Feststoff. In der Regel liegt das Salz in Lösung vor und kann durch Verdampfen des Wassers als Feststoff gewonnen werden.

Säure + Base → Salz + Wasser
Salzsäure + NatronlaugeNatriumchlorid + Wasser
HCl (aq) + NaOH (aq) → NaCl (aq) + H2O (l)
Schwefelsäure + BariumhydroxidBariumsulfat + Wasser
H2SO4 (aq) + Ba(OH)2 (aq) → BaSO4 (s) + 2H2O (l)

Aus anderen Salzen

Einige Salze lassen sich aus zwei anderen Salzen gewinnen. Mischt man wässrige Lösungen von zwei Salzen, kann sich ein drittes Salz als Feststoff bilden. Dies gelingt nur, wenn das dritte Salz im Gegensatz zu den anderen beiden schlechter löslich ist.

Salzlösung A + Salzlösung B → Salz C + Salzlösung D
Natriumchlorid + SilbernitratSilberchlorid + Natriumnitrat
NaCl(aq) + AgNO3(aq) → AgCl(s) + NaNO3(aq)
Calciumchlorid + NatriumcarbonatCalciumcarbonat + Natriumchlorid
CaCl2(aq) + Na2CO3(aq) → CaCO3(s) + NaCl(aq)

Reaktion von Oxiden

Wie oben beschrieben tendieren Metalloxide dazu, mit Wasser Hydroxide zu bilden. Mit Säuren lassen sich Oxonium-Ionen zu Wasser neutralisieren. Unter sauren Bedingungen reagieren auch Metalloxide, die in reinem Wasser „unlöslich“ (= stabil) sind. Auf diesem Weg lassen sich viele Salze, wie etwa Kupfersulfat gewinnen.

Metalloxid + Säure → Salz + Wasser
Kupfer(II)-oxid + SchwefelsäureKupfersulfat + Wasser
CuO(s) + H2SO4(aq) → CuSO4(aq) + H2O

Andere Reaktionen

Die Ionen in den oben beschriebenen Reaktionen werden nicht erst gebildet, sondern sie existieren bereits vor der Bildung eines neuen Salzes. Sind bei Reaktionen zur Bildung eines neuen Salzes keine oder nicht alle Ionen mit der nötigen Ladung vorhanden, finden Redoxreaktionen statt. So lassen sich aus elementaren Metallen und Nichtmetallen Salze gewinnen. Reaktionen dieser Art werden unter Salzbildungsreaktion näher beschrieben.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Saure Salze — Saure Salze, s.u. Sauer u. Salze …   Pierer's Universal-Lexikon

  • Salze — Salze,   ursprünglich in ihrer Beschaffenheit dem Salz (Kochsalz) ähnliche Stoffe, die sich durch Reaktion von Säuren mit Basen (Neutralisation) herstellen lassen. Saure Salze entstehen bei der unvollständigen Neutralisation mehrwertiger Säuren… …   Universal-Lexikon

  • Säure — Säuren sind im engeren Sinne alle Verbindungen, die in der Lage sind, Protonen (H+) an einen Reaktionspartner zu übertragen – sie können als Protonendonator fungieren. In wässriger Lösung ist der Reaktionspartner im wesentlichen Wasser. Es bilden …   Deutsch Wikipedia

  • Säure-Base-Konzepte — Um die Begriffe Säure und Base haben sich in der Chemie verschiedene Konzepte entwickelt, die auf unterschiedlichen Begriffsdefinitionen beruhen. Der Antrieb dieser Entwicklung beruht einerseits auf der Suche nach einer möglichst umfassenden und… …   Deutsch Wikipedia

  • Salze — Salze, chemische Verbindungen, von denen viele eine gewisse äußere Ähnlichkeit mit dem vornehmlich Salz genannten Körper, dem Chlornatrium, besitzen, nämlich in Wasser löslich sind, kristallisieren und einen eigentümlichen salzigen Geschmack… …   Meyers Großes Konversations-Lexikon

  • Salze — sind Verbindungen, welche entweder durch Ersetzung des Wasserstoffs einer Säure (s.d.) durch Metallatome (H2SO4 + Zn = H2 + ZnSO4) oder durch Vereinigung einer Säure mit einer Base (s.d.) unter Wasserabscheidung (HCl + KOH = KCl + H2O), oder… …   Lexikon der gesamten Technik

  • Säure — saure Lösung * * * Säu|re [ zɔy̮rə], die; , n: 1. bestimmte chemische Verbindung [mit einem kennzeichnenden Geschmack]: eine ätzende Säure. 2. saurer Geschmack: der Wein hat viel Säure. * * * Säu|re 〈f. 19〉 1. chemische Verbindung, die mit Basen… …   Universal-Lexikon

  • Salze [2] — Salze, Verbindungen, welche durch Vereinigung einer Säure mit einer Basis entstehen. Wie man die Säuren als Sauerstoffsäuren u. Wasserstoffsäuren unterscheidet, so nimmt man anch zweierlei S. an, nämlich S., welche durch Vereinigung einer… …   Pierer's Universal-Lexikon

  • Salze — Salze, chem. Verbindungen, die aus Säuren beim Ersatz der Wasserstoffatome durch Metalle oder zusammengesetzte Radikale (z.B. Ammonium) entstehen. S. von Sauerstoffsäuren nennt man Sauerstoff S. oder Oxy. S. (früher Amphid S.), S. von Thiosäuren… …   Kleines Konversations-Lexikon

  • Salze — Salze, ein seit uralter Zeit in die Kunstsprache der Chemie aufgenommenes Wort. Ursprünglich ein von den Eigenschaften des Koch S.s – Auflöslichkeit u. salziger Geschmack – abstrahirter Begriff, wurde derselbe auf eine Anzahl Stoffe, deren… …   Herders Conversations-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”