Symplektische Topologie

Symplektische Topologie

In der Mathematik bezeichnet eine symplektische Mannigfaltigkeit eine glatte Mannigfaltigkeit M zusammen mit einer symplektischen Form ω, das heißt einer globalen glatten 2-Form, die punktweise nicht ausgeartet ist. Manchmal wird auch noch gefordert, dass die Form geschlossen ist, dass also dω = 0 gilt.

Inhaltsverzeichnis

Poisson-Klammer

Da die Form \omega=\sum_{ij}\omega_{ij}\,\mathrm dx^i\,\mathrm d x^j nicht ausgeartet ist, definiert sie mit ihrem Inversen an jedem Punkt eine bilineare Abbildung von Eins-Formen \eta=\sum_i\eta_i\, \mathrm d x^i und \chi=\sum_j\chi_j\, \mathrm d x^j

\Omega(\eta,\chi) =\sum_{ij} \omega^{ij}\,\eta_i\, \chi_j\,,\quad \sum_j \omega^{ij}\omega_{jk}=\delta^i{}_k

und die Poisson-Klammer der Funktionen f und g\,,

\{f, g\}=\Omega(\mathrm d f, \mathrm d g) = \sum_{ij}\omega^{ij}\,\partial_i f\, \partial_j g\,.

Hamiltonscher Fluss

In einem Euklidischen Raum ist der Gradient einer Funktion f dasjenige Vektorfeld gf, dessen Skalarprodukt mit jedem Vektorfeld w mit dem Anwenden von df auf w übereinstimmt,

(g_f,w) =\mathrm d f(w) = w(f)\,.

In einer symplektischen Mannigfaltigkeit gehört zu jeder Funktion h das Vektorfeld

v_h:f\mapsto \{f,h\}\,,

das Funktionen f längs der Integralkurven der zu h gehörigen Hamiltonschen Gleichungen ableitet. Das Vektorfeld vh ist der symplektische Gradient von h oder der infinitesimale Hamiltonsche Fluss von h.

Satz von Darboux

In der Umgebung jedes Punktes einer symplektischen Mannigfaltigkeit gibt es lokale Koordinaten qi,pi mit \omega = \sum_{i} \mathrm d q_i \and \mathrm d p_i\

Ein Beweis findet sich im Buch von Arnold in Kapitel 8.

Zusammenhang zur Hamiltonschen Mechanik

In der Hamiltonschen Mechanik ist der Phasenraum eine symplektische Mannigfaltigkeit mit der geschlossenen, symplektischen Form

\omega = \sum_{i} \mathrm d q_i \and \mathrm d p_i\,,\ \mathrm d \omega = 0\,.

Dies ist kein Spezialfall, denn nach dem Satz von Darboux lässt sich ω in lokalen Koordinaten immer als \sum_{i} \mathrm d q_i \and \mathrm d p_i\ schreiben. Bei symplektischen Mannigfaltigkeiten handelt es sich um die Phasenräume Hamiltonscher Mechanik.

Literatur

  • Arnold, V. I. Mathematical Methods of Classical Mechanics, Springer-Verlag (1989), ISBN 0-387-96890-3

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Stabile Abbildung (symplektische Topologie) — In der symplektischen Topologie kann man den Modulraum stabiler Abbildungen, von Riemannflächen in eine gegebene symplektische Mannigfaltigkeit definieren. Dieser Modulraum ist wesentlich für die Konstruktion der Gromov Witten Invarianten, die in …   Deutsch Wikipedia

  • Symplektische Feldtheorie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • Gromow-Witten-Invariante — Gromov Witten Invarianten sind eine spezielle Form topologischer Invarianten, welche eine Verbindung zwischen Topologie und Algebra herstellen. Genauer bezeichnen sie in der symplektischen Topologie und algebraischen Geometrie rationale Zahlen,… …   Deutsch Wikipedia

  • Liste von Mathematikerinnen — Die Liste von Mathematikerinnen führt auch theoretische Informatikerinnen und theoretische Physikerinnen mit deutlich mathematischer Ausrichtung auf. Aufgenommen wurden unter anderem die Preisträgerinnen der Noether Lecture und des Ruth Lyttle… …   Deutsch Wikipedia

  • Dietmar Salamon — Dietmar Arno Salamon (* 7. März 1953 in Bremen) ist ein deutscher Mathematiker. Er ist seit 1998 Professor für Mathematik an der ETH Zürich. Salamon studierte in Universität Hannover Mathematik. 1982 promovierte er an der Universität Bremen über… …   Deutsch Wikipedia

  • Dietmar Arno Salamon — (* 7. März 1953 in Bremen) ist ein deutscher Mathematiker. Er ist seit 1998 Professor für Mathematik an der ETH Zürich. Salamon (2. von rechts) in Zürich 2007 Salamon studierte an der Universität Hannover Mathematik. 1982 promovierte er an der… …   Deutsch Wikipedia

  • Jean Cerf — (* 1928) ist ein französischer Mathematiker, der sich mit Topologie beschäftigt. Cerf studierte an der École normale supérieure und promovierte bei Henri Cartan. Er war dann Maître de conférences an der Universität Lille und dann Professor an der …   Deutsch Wikipedia

  • Floer-Homologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • Floerhomologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • Differentialgeometrie — Die Differentialgeometrie stellt als Teilgebiet der Mathematik die Synthese von Analysis und Geometrie dar. Inhaltsverzeichnis 1 Historische Entwicklung und aktuelle Anwendungsgebiete 2 Teilgebiete 2.1 Elementare Differentialgeometrie …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”