Trinomial Triangle

Trinomial Triangle

Das Trinomial Triangle (engl., etwa Trinominales Dreieck) ist eine Abwandlung zum Pascalschen Dreieck. Der Unterschied besteht darin, dass ein Eintrag die Summe der drei (statt wie im echten Pascalschen Dreieck der zwei) darüberstehenden Einträge ist. Bisher hat sich wegen der eher geringen mathematischen Relevanz kein allgemein anerkannter deutscher Begriff durchsetzen können. In der deutschen Ausgabe des Buches „Schach und Mathematik“ von Jewgeni Gik wird es „Pascalsches 3-arithmetisches Dreieck“ genannt.

\begin{matrix}
 & &  &  & 1\\
 & &  & 1& 1&1\\
 & & 1& 2& 3&2&1\\
 &1& 3& 6& 7&6&3&1\\
1&4&10&16&19&16&10&4&1\end{matrix}

Für den k-ten Eintrag in der n-ten Zeile hat sich die Bezeichnung

{n\choose k}_2

etabliert. Die Zeilen werden dabei mit 0 beginnend gezählt, die Einträge in der n-ten Zeile mit \left(-k\right) beginnend, der mittlere Eintrag hat also Index 0, und die Symmetrie wird durch die Formel

{n\choose k}_2={n\choose-k}_2

ausgedrückt.

Inhaltsverzeichnis

Eigenschaften

Die n-te Zeile entspricht den Koeffizienten der Polynomentwicklung der n-ten Potenz von 1 + x + x2, also eines speziellen Trinoms[1]:

\left(1+x+x^2\right)^n= \sum _{j=0}^{2n}{n\choose j-n}_2 x^{j}=\sum _{k=-n}^{n}{n\choose k}_2 x^{n+k}

oder symmetrisch

\left(1+x+1/x\right)^n=\sum_{k=-n}^{n}{n\choose k}_2 x^k.

Daraus ergibt sich auch die Bezeichnung Trinomialkoeffizienten und die Beziehung zu den Multinomialkoeffizienten:

{n\choose k}_2=\sum_{\textstyle{0\leq\mu,\nu\leq n\atop\mu+2\nu=n+k}}\frac{n!}{\mu!\,\nu!\,(n-\mu-\nu)!}.

Des Weiteren sind interessante Folgen in den Diagonalen enthalten, etwa die Dreieckszahlen.

Die Summe der Elemente der n-ten Zeile ist 3n.

Rekursionsformel

Die Trinomialkoeffizienten lassen sich mit folgender Rekursionsformel berechnen[1]:

{0\choose 0}_2=1,
{n+1\choose k}_2={n\choose k-1}_2+{n\choose k}_2+{n\choose k+1}_2 für n\geq 0,

wobei {n\choose k}_2=0 für \ k<-n und \ k>n zu setzen ist.

Die mittleren Einträge

Die Folge der mittleren Einträge (Folge A002426 in OEIS)

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, …

wurde bereits von Euler untersucht: Sie ist explizit gegeben durch

{n\choose0}_2=\sum_{k=0}^n\frac{n(n-1)\cdots(n-2k+1)}{(k!)^2}=\sum_{k=0}^n{n\choose 2k}{2k\choose k}.

Die zugehörige erzeugende Funktion ist

1+x+3x^2+7x^3+19x^4+\ldots=\frac1{\sqrt{(1+x)(1-3x)}}.[2]

Euler bemerkte auch das exemplum memorabile inductionis fallacis (bemerkenswertes Beispiel trügerischer Induktion):

3{n+1\choose0}_2-{n+2\choose0}_2=f_n(f_n+1) für 0\leq n\leq 7

mit der Fibonacci-Folge (fn). Für größere n ist die Beziehung jedoch falsch. George Andrews erklärte dies durch die allgemeingültige Identität[3]

2\sum_{k\in\mathbb Z}\left[{n+1\choose 10k}_2-{n+1\choose 10k+1}_2\right]=f_n(f_n+1).

Schachmathematik

Anzahl der Möglichkeiten, ein Feld mit der minimalen Zahl von Zügen zu erreichen

Das Dreieck entspricht der Zahl der möglichen Pfade eines Schachkönigs, die er (bei minimaler Anzahl von Zügen) nehmen kann, um vom obersten Feld des Rasters jenes mit der entsprechenden Zahl zu erreichen.

Bedeutung in der Kombinatorik

Der Koeffizient von xk in der Polynomentwicklung von \left(1+x+x^2\right)^n gibt an, wie viele verschiedene Möglichkeiten es gibt, um ungeordnet k Karten aus einem Paket von zwei identischen Kartenspielen je n unterschiedlicher Karten auszuwählen.[4] Hat man beispielsweise zwei Kartenspiele mit den Karten A,B,C, so sieht das folgendermaßen aus:

Anzahl gewählte Karten Anzahl Möglichkeiten Möglichkeiten
0 1
1 3 A, B, C
2 6 AA, AB, AC, BB, BC, CC
3 7 AAB, AAC, ABB, ABC, ACC, BBC, BCC
4 6 AABB, AABC, AACC, ABBC, ABCC, BBCC
5 3 AABBC, AABCC, ABBCC
6 1 AABBCC

Insbesondere ergibt sich daraus {24\choose 12-24}_2={24\choose -12}_2={24\choose 12}_2 für die Anzahl der unterschiedlichen Hände im Doppelkopf.

Alternativ lässt sich die Zahl dieser Möglichkeit auch berechnen, indem man über die Anzahl p der Pärchen in der Hand aufsummiert; dafür gibt es {n\choose p} Möglichkeiten und für die verbleibenden k − 2p Karten gibt es {n-p\choose k-2p} Möglichkeiten[4], sodass sich daraus folgende Beziehung zu den Binomialkoeffizienten ergibt:

{n\choose k-n}_2=\sum_{p=\max(0,k-n)}^{\min(n,[k/2])}{n\choose p}{n-p \choose k-2p}.

Beispielsweise gilt

6={3\choose 2-3}_2={3\choose 0}{3\choose 2}+{3\choose 1}{2\choose 0}=1\cdot 3+3\cdot 1.

In obigem Beispiel entspricht das dann für die Auswahl von 2 Karten den 3 Möglichkeiten mit 0 Pärchen (AB, AC, BC) sowie den 3 Möglichkeiten mit einem Pärchen (AA, BB, CC).

Literatur

  • Leonhard Euler, Observationes analyticae. Novi Commentarii academiae scientiarum Petropolitanae 11 (1767) 124–143 PDF

Einzelnachweise

  1. a b Eric W. Weisstein: Trinominal Coeffitient. In: MathWorld. (englisch)
  2. Eric W. Weisstein: Central Trinomial Coefficient. In: MathWorld. (englisch)
  3. George Andrews, Three Aspects for Partitions. Séminaire Lotharingien de Combinatoire, B25f (1990) http://www.mat.univie.ac.at/~slc/opapers/s25andrews.html
  4. a b Andreas Stiller: Pärchenmathematik. Trinomiale und Doppelkopf. c't Heft 10/2005, S 181ff

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • triangle — Synonyms and related words: Platonic body, T square, acute angled triangle, adulterous affair, adultery, affair, amour, battery, bell, bells, bones, branks, castanets, celesta, chime, chimes, church bell, clapper, clappers, clover, cowbell, crank …   Moby Thesaurus

  • Trinomial expansion — In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by :(a+b+c)^n = sum {i,j,k} {n choose i,j,k}, a^i , b^j , c^k where n is a nonnegative integer and the sum is taken… …   Wikipedia

  • Pascal's triangle — The first six rows of Pascal s triangle In mathematics, Pascal s triangle is a triangular array of the binomial coefficients in a triangle. It is named after the French mathematician, Blaise Pascal. It is known as Pascal s triangle in much of the …   Wikipedia

  • Pascal'sches Dreieck — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

  • Pascal'sches Koeffizienten-Schema — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

  • Pascal-Dreieck — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

  • Pascaldreieck — Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden Einträge ist. Dieser Sachverhalt wird durch die Gleichung… …   Deutsch Wikipedia

  • Pascalsches Dreieck — Jeder Eintrag ist die Summe der zwei darüberstehenden Einträge Das pascalsche Dreieck ist eine geometrische Darstellung der Binomialkoeffizienten . Sie sind im Dreieck derart angeordnet, dass jeder Eintrag die Summe der zwei darüberstehenden… …   Deutsch Wikipedia

  • Pascalsches 3-arithmetisches Dreieck — Das Trinomial Triangle (engl., etwa Trinominales Dreieck) ist eine Abwandlung zum Pascalschen Dreieck. Der Unterschied besteht darin, dass ein Eintrag die Summe der drei (statt wie im echten Pascalschen Dreieck der zwei) darüberstehenden Einträge …   Deutsch Wikipedia

  • Trinomialkoeffizient — Das Wort Trinomialkoeffizient wird in der Mathematik für verschiedene Begriffe verwendet: für die Koeffizienten von (a + b + c)n, also die dritten Multinomialkoeffizienten; vgl. Pascalsche Pyramide, für die Koeffizienten von (1 + x + x2)n, siehe… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”