Verdoppelung des Würfels — Verdoppelung des Würfels, s. Delisches Problem … Meyers Großes Konversations-Lexikon
Verdoppelung des Würfels — Verdoppelung des Würfels, delisches Problem … Universal-Lexikon
Verdoppelung — Verdoppelung, 1) V. der Säulen, s.u. Säule S. 8; 2) so v. w. Diplasiasmus; 3) V. des Würfels, so v. w. Delisches Problem … Pierer's Universal-Lexikon
Quadratur des Kreises — Das Quadrat und der Kreis haben den gleichen Flächeninhalt. Die Quadratur des Kreises ist ein klassisches Problem der Geometrie. Die Aufgabe besteht darin, aus einem gegebenen Kreis in endlich vielen Schritten ein Quadrat mit demselben… … Deutsch Wikipedia
Delisches Problem — Delisches Problem, verlangt, aus der Seite eines gegebenen Würfels die Seite eines anderen zu finden, dessen Inhalt zu jenem ein gegebenes Verhältniß von 2: 1; daher ist dieses Problem auch als das von der Verdoppelung des Würfels bekannt. Nennt… … Pierer's Universal-Lexikon
Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Galoissch — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia
Körpererweiterung (Mathematik) — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… … Deutsch Wikipedia