Verhältnis (Mathematik)

Verhältnis (Mathematik)

In der Mathematik und in den Naturwissenschaften bezeichnet der Quotient ein Verhältnis von zwei Größen zueinander, also das Ergebnis einer Division. Der Quotient von zwei ganzen Zahlen (Dividend und Divisor) ist immer eine rationale Zahl und kann als Bruch geschrieben werden.

Ein Quotient dient oftmals der Einordnung eines Wertes in einen Gesamtmaßstab, so z. B. der Intelligenzquotient, der die mit einem Intelligenztest ermittelte Zahl für eine Person mit der ihrer Altersgruppe entsprechenden "durchschnittlichen Intelligenz" in Beziehung setzt. Der Intelligenzquotient 100 steht dabei für den Durchschnitt. Verhältnisse werden häufig in Prozent angegeben, indem das Verhältnis so normiert (also erweitert oder gekürzt) wird, dass der Nenner 100 ist.

Besondere Verhältnisse in diesem Sinne sind:

Inhaltsverzeichnis

Proportionen

Als Verhältnisgleichungen oder Proportionen werden Gleichungen bezeichnet, die zwei Verhältnisse gleichsetzen. Sie haben also die Form a÷b = c÷d. a und c heißen auch Vorderglieder, b und d Hinterglieder der Proportion. Darüber hinaus heißen a und d Außenglieder sowie b und c Innenglieder. Die Proportion kann durch Kreuzmultiplikation in eine Gleichung der Form a·d = c·b umgeformt werden. Durch Vertauschen der Innenglieder bzw. der Außenglieder einer Proportion entstehen neue Proportionen: a÷c = b÷d und d÷b = c÷a. Darüber hinaus gelten die Gesetze der korrespondierenden Addition und Subtraktion:

Gesetze der korrespondierenden Addition und Subtraktion

Es sei die Proportion a÷b = c÷d gegeben. Dann gelten auch die Proportionen

\frac{a+b}{b}=\frac{c+d}{d} und \frac{a}{a+b}=\frac{c}{c+d} und \frac{a-b}{b}=\frac{c-d}{d} und \frac{a}{a-b}=\frac{c}{c-d} und \frac{a+b}{a-b}=\frac{c+d}{c-d}

Fortlaufende Proportionen

Gelegentlich findet sich auch die Schreibweise a÷b÷c = u÷v÷w. Diese fortlaufenden Proportionen sind nicht als eine einzelne Gleichung zu verstehen, sondern sind vielmehr ein Kurzform für die beiden Gleichungen a÷b = u÷v und b÷c = v÷w (bzw. äquivalent a÷u = b÷v und b÷v = c÷w).[1]

Beispiele

Einzelnachweise

  1. Walter Gellert, Herbert Kästner, Siegfried Neuber (Hrsg): Lexikon der Mathematik, VEB Bibliographisches Institut Leipzig, 1979. S 447, Proportion.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Verhältnis — steht für: Verhältniszahl, siehe Dimensionslose Größe Verhältnis (Mathematik) vor oder außereheliche Beziehung (veralteter Ausdruck), siehe Geschichte einer Liebesbeziehung Verhältnis zwischen Studentenverbindungen, siehe Verhältnisvertrag… …   Deutsch Wikipedia

  • Verhältnis — Anteil; Proportion; Größenverhältnis; Quotient; Kontakt; Konnex; Umgang; Beziehung; Abhängigkeit; Zusammenhang; Verbindung; Rel …   Universal-Lexikon

  • Mathematik: Struktur- und Erkenntnismittel in Natur und Kunst Altgriechenlands —   Ähnlich wie in der zeitgenössischen Kunst, die ihre Gegenstände abstrakt zu geometrisch vereinfachten Formen verdichtet, ging man bereits seit Hesiod und Anaximander davon aus, dass (vergleichsweise einfache) durch Alltag, Sprache oder… …   Universal-Lexikon

  • Verhältnis — Verhältnis, im allgemeinen die Beziehung des einen auf ein andres. Daher ist eine Verhältnisbestimmung eine solche, die einem Ding oder einem Begriff nicht an sich selbst, sondern nur in seiner Beziehung auf ein andres, oder vermöge einer… …   Meyers Großes Konversations-Lexikon

  • Verhältnis — Verhältnis, in der Mathematik s. Proportion …   Kleines Konversations-Lexikon

  • Mathematik — Die Mathematik (griechisch μαθηματική τέχνη mathēmatikē téchnē: „die Kunst des Lernens, zum Lernen gehörig“; umgangssprachlich Mathe) ist die Wissenschaft, welche aus der Untersuchung von Figuren und dem Rechnen mit Zahlen entstand. Für… …   Deutsch Wikipedia

  • Streckung (Mathematik) — Zentrische Streckung mit positivem Streckungsfaktor Zentrische Streckung mit negativem Streckungsfaktor Unter einer zentrischen Streckung versteht man in der Geometrie eine …   Deutsch Wikipedia

  • Goldenes Dreieck (Mathematik) — Der Goldene Schnitt (lat. sectio aurea) ist ein bestimmtes Verhältnis zweier Zahlen oder Größen: Zwei Strecken stehen im Verhältnis des Goldenen Schnittes, wenn sich die größere zur kleineren Strecke verhält wie die Summe aus beiden zur größeren …   Deutsch Wikipedia

  • Differenzial (Mathematik) — Historisch war der Begriff des Differentials bzw. Differenzials im 17. und 18. Jahrhundert der Kern der Entwicklung der Differentialrechnung. Ab dem 19. Jahrhundert wurde die Analysis durch Augustin Louis Cauchy und Karl Weierstrass auf der… …   Deutsch Wikipedia

  • Differential (Mathematik) — Historisch war der Begriff des Differentials bzw. Differenzials im 17. und 18. Jahrhundert der Kern der Entwicklung der Differentialrechnung. Ab dem 19. Jahrhundert wurde die Analysis durch Augustin Louis Cauchy und Karl Weierstrass auf der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”