Vesikulartransport

Vesikulartransport
Abb.1: Stark schematisierte Darstellung der Möglichkeiten, über eine Biomembran hinweg mit der Umgebung Stoffe auszutauschen, 1 bezeichnet das Innere, 2 das Äußere. Weitere Beschreibung siehe im Text.

Unter Membrantransport wird in der Biologie der Transport von unterschiedlichen Stoffen durch eine Biomembran verstanden. Werden dabei zugleich Teile der Membran selbst verlagert, wird dies gelegentlich als Membranfluss gesondert bezeichnet.

Das Innere eines von einer Biomembran umschlossenen Bereiches (beispielsweise das Zytoplasma einer Zelle) stellt eine biologisch aktive, in sich geschlossene Einheit dar. Es besitzt ein für die Funktion unerlässliches Milieu. Die aus Phospholipiden bestehende Doppelschicht der Membran ist nur für Gase und sehr kleine, meist ungeladene (und somit hydrophobe) Moleküle permeabel. Für Ionen sowie die meisten biologisch wirksamen Substanzen ist sie ohne Hilfe eine unüberwindbare Barriere, da solche Moleküle geladen und somit hydrophil sind.

Alle Lebensprozesse und spezifischen Zellfunktionen sind darauf angewiesen, dass die Zelle oder deren Kompartimente mit ihrer Umgebung in Kontakt stehen. Dazu gehört unter anderem auch der Stoffaustausch mit dem Außenraum. Deswegen müssen Mechanismen vorhanden sein, die es Molekülen erlauben, die Membran zu durchqueren.

Inhaltsverzeichnis

Transmembran-Transport

Einfache Diffusion

Lipophile und kleine, ungeladene aber polare Moleküle können durch Diffusion durch die Membran gelangen. Dabei folgen sie immer ihrem Konzentrationsgefälle, mit dem Bestreben dieses auszugleichen. Ist die Konzentration innerhalb und außerhalb der Zelle gleich, stellt sich ein Fließgleichgewicht ein (siehe Abb. 1, A). Bei geladenen Teilchen spielt auch das Membranpotential bei der Einstellung des Gleichgewichtes eine Rolle.

Passiver Transport

Auch beim passiven Transport überwinden Moleküle die Membran ohne jegliche Zuführung von Energie von außen oder von der Zelle in Richtung eines Konzentrations- oder Potentialgefälles. Letztlich ist der passive Transport nur ein Spezialfall der Diffusion, da hier auch größere Moleküle und Ionen, wie Zucker, Aminosäuren oder Nukleotide, für die die Membran unüberwindlich ist, mit Hilfe von Membrantransport-Proteinen von einer Seite auf die andere befördert werden. Dabei gibt es zwei Möglichkeiten: Ionenkanal und Carrier.

Freie Diffusion

Bei der freien Diffusion kommen Kanäle zum Einsatz. Diese bestehen aus Transmembranproteinen (auch Kanalproteine genannt), welche die Membran tunnelartig durchspannen. Zum Inneren des Kanals hin tragen sie polare Aminosäuren. Dadurch können kleine polare oder geladene Teilchen wie Ionen über diese Kanäle in die Zelle gelangen. Verschiedene Kanäle weisen eine unterschiedliche Spezifität hinsichtlich der Leitfähigkeit für bestimmte Ionen oder Moleküle auf.

Die meisten Kanäle öffnen sich erst auf ein bestimmtes Signal hin. Ligandengesteuerte Kanäle reagieren auf die Bindung eines Botenstoffes, beispielsweise eines Hormons. Spannungsgesteuerte Kanäle reagieren auf die Änderung des Membranpotentials. Mechanisch gesteuerte Kanäle reagieren auf Reize wie Druck oder Scherung.

Sind die Kanäle einmal offen, diffundieren die Moleküle ohne weiteren Einfluss von außen von der Seite mit höherer zu der mit niedrigerer Konzentration, bis der Konzentrationsausgleich erreicht ist oder sich die Kanäle wieder schließen (Siehe Abb. 1, B).

Aquaporine bilden wasserleitende Kanäle.

Weitere Ionenkanäle die eine erleichterte Diffusion ermöglichen sind Faciliatoren (Beschleuniger).

Erleichterte Diffusion

Abb. 2: Schematische Darstellung von Uniport (I), Symport (II) und Antiport (III). M bezeichnet die Zellmembran.

Bei der erleichterten Diffusion wird das Molekül von Carriern von einer Seite auf die andere transportiert. Carrier sind auf ganz bestimmte Moleküle spezialisiert, für die sie - ähnlich wie Enzyme - eine Bindungsstelle haben. Wenn sich der Carrier mit dem Substrat verbindet, ändert er seine Konformation. Durch diese Umlagerung wird das betreffende Molekül durch die Membran geschleust und auf der anderen Seite freigesetzt (Siehe: Abb. 1, E). Jeder zu transportierende Stoff ist auf sein entsprechendes Carrier-Protein angewiesen. Während manche Carrier nur ein Molekül auf einmal befördern können (Uniport) haben andere Bindungsstellen für 2 verschiedene Moleküle. Sie ändern ihre Konformation erst dann, wenn beide Bindungsstellen besetzt sind. Der Transport erfolgt für beide Moleküle in der gleichen (Symport) oder in entgegen gesetzter Richtung (Antiport) (Symporter: Transportprotein, das zwei Moleküle oder Ionen in die gleiche Richtung durch die Membran transportieren kann; Antiporter: in entgegengesetzte Richtungen)

Aktiver Transport

Während beim passiven Transport Moleküle die Membran eigenständig und ohne Energieverbrauch entsprechend dem Konzentrationsgefälle überwinden, kann der aktive Transport auch gegen dieses Gefälle stattfinden, verbraucht dann aber Energie. Auch die Größe der Moleküle ist unwichtig. Die benötigte Energie wird in Form von ATP zur Verfügung gestellt.

Es gibt primär, sekundär und tertiär aktiven Transport sowie den Spezialfall Gruppentranslokation.

  • Beim primär aktiven Transport werden unter ATP-Verbrauch Protonen und anorganische Ionen durch Transport-ATPasen durch die Zytoplasmamembran hindurch aus der Zelle gepumpt. Die H+-ATPase arbeitet in Pflanzenzellen z. B. als Protonenpumpe. Ein Ion wird durch eine so genannte Ionenpumpe ( Abb.1 E), von der Seite der niedrigeren auf die Seite der höheren Konzentration gepumpt. Die Energie entstammt der Hydrolyse von ATP zu ADP und anorganischem Phosphat (Siehe: Abb. 1, D). Eine wichtige Anwendung für den primär aktiven Transport ist die Natrium-Kalium-Pumpe, ein in die Zellmembran integriertes Protein, das, unter Verbrauch von ATP, drei positiv geladene Natrium-Ionen aus der Zelle hinaus pumpt und im selben Zyklus zwei ebenfalls positiv geladene Kalium-Ionen in die Zelle hineinpumpt. Dadurch wird das Ruhepotential in Nervenzellen (Neuronen) aufrechterhalten, das zur Erzeugung und Weiterleitung von Aktionspotentialen notwendig ist.
  • Der sekundär aktive Transport befördert ein Ion passiv entlang seines Konzentrationsgradienten und nutzt dabei die potentielle Energie dieses Gradienten aus, um ein zweites Substrat gegen dessen Konzentrationsgradienten in gleicher Richtung (Symport, z. B. Natrium-Glukose-Symport im Dünndarm, Natrium-Iodid-Symporter in der Schilddrüse) bzw. in entgegen gesetzter Richtung (Antiport, z. B. der Natrium-Calcium-Antiport durch den Natrium-Calcium-Austauscher) zu transportieren (Siehe: Abb. 1, C).
  • Beim tertiär aktiven Transport wird der Konzentrationsgradient genutzt, den ein sekundär aktiver Transport auf der Basis eines primär aktiven Transports aufgebaut hat. Durch diese Form des aktiven Transports werden im Dünndarm z. B. Di- und Tripeptide aufgenommen.
  • Bei der Gruppentranslokation werden meist Monosaccharide wie Glucose und Mannose oder Zuckeralkohole wie Glucitol oder Mannitol durch eine Membran geschleust, wobei der zu transportierende Stoff chemisch verändert (i.A. phosphoryliert) wird und damit gar kein Konzentrationsgradient entsteht. Das bestuntersuchte Gruppentranslokationssystem ist das sogenannte PEP-PTS (Phosphoenolbrenztraubensäure-Phosphotransferase-System) bei E. coli. Die notwendige Energie stammt statt aus ATP von PEP (Phosphoenolbrenztraubensäure). Diese Form des aktiven Transports wurde bisher nur bei Bakterien gefunden.

Membran verlagernder Transport

Endozytose

Als Endozytose bezeichnet man einen Einstülpungsvorgang der Biomembran, bei dem sich eine Einzelzelle oder ein Kompartiment einen Flüssigkeitstropfen, bestimmte darin gelöste Substanzen, Makromoleküle oder größere Nahrungsteilchen bis hin zu kleineren anderen Zellen, einverleibt. Am Ende des Einstülpungsvorgangs wird ein Vesikel ins Zellinnere abgeschnürt bzw. abgestoßen und ist jetzt Teil des Endomembransystems. So nimmt die Zelle einen Teil des umgebenen Mediums in ihr Inneres auf (Siehe: Abb. 1, F).

Man unterscheidet zwei verschiedene Formen der Endozytose:

  • die Phagozytose (auch „Zellfressen“ genannt), bei der feste Partikel aufgenommen werden,
  • die Pinozytose (das „Zelltrinken“), bei der gelöste Partikel aufgenommen werden.

Des Weiteren ist die rezeptorvermittelte (bzw. rezeptorgesteuerte) Endozytose von Bedeutung, bei der spezielle Rezeptoren an der Zelloberfläche für die Erkennung der aufzunehmenden Partikel zuständig sind. So tragen beispielsweise LDL-Partikel das Apolipoprotein B-100 an ihrer Oberfläche, das an den LDL-Rezeptor der Zelle bindet, und so die Aufnahme des Partikels auslöst. Auf diese Weise wird beispielsweise Cholesterin in die Zelle aufgenommen. Nach der Bindung an den Rezeptor stülpt sich die Zellmembran ein, und bildet eine coated pit (deutsch: ummantelte Grube, eine Vertiefung, die mit dem Protein Clathrin ausgekleidet ist). Am Nacken des dabei wachsenden Vesikels lagert sich das Protein Dynamin an. Dieses erkennt mit seiner Pleckstrin-homologen Domäne (pleckstrin homology domain, PH) spezifisch das Phosphainositol aus der Membran. Bei der Anordnung zu einem Dynamin-Supramolekül hilft Ampiphysin, welches mit seiner SH3-Domäne die prolinreiche Domäne (PRD) des Dynamins bindet und dabei weitere Dynaminmoleküle rekrutiert. Im GTP-gebundenen Zustand liegt das Supramolekül als rechtsgewundene Helix um den Vesikelnacken. Während der Interaktion der GED-Domäne und der GTPase Domäne von Dynamin wird GTP hydrolysiert und das Dynamin-Supramolekül macht eine Konformationsänderung durch. In der „Poppase“-Theorie ist dieses ein Anstieg in der Ganghöhe der Dynaminhelix, welcher dazu führt, dass der Vesikel von der Membran abgestoßen wird. In der „Pinchase“-Theorie ist es diese Konformationsänderung, die zur Verringerung des Helixdurchmessers führt und somit zur Abschnürung des Vesikelnackens.

Exozytose

Die Exozytose ist ein Vorgang, bei dem Stoffe aus der Zelle an die Zellumgebung abgegeben werden. Diese Stoffe können entweder in der Zelle gebildet werden oder unverdauliche Überreste aus der Zellverdauung sein. Grundsätzlich verschmilzt bei der Exozytose immer ein Transportvesikel (Exosom) mit der Zellmembran (Siehe: Abb. 1, G). Das Exosom besitzt eine einfache Lipiddoppelschicht (Biomembran) als äußere Umhüllung, aus welcher auch die Zellmembran besteht. Die meisten Exozytosen sind mit einer Endozytose verbunden (Exozytose-gekoppelte-Endozytose). Diese ist notwendig, um zu verhindern, dass die Zellmembran sich ungehindert vergrößert. Auf der anderen Seite spart sich die Zelle hiermit auch die Neusynthese von Transportvesikeln und den zugehörigen Membranproteinen. Dieser Vorgang wird als Vesicle Recycling bezeichnet.

Transzytose

Transzytose (=Zytopempsis) ist ein rezeptorabhängiger Transport von extrazellulärem Material durch die Zelle hindurch und somit eine Kombination aus Endozytose und Exozytose. Das Vesikel wird an eine Nachbarzelle weitergegeben oder in den extrazellulären Raum transportiert, ohne dass sein Inhalt verändert wird. Sie tritt in den Epithelzellen der Gefäße und in den Epithelzellen des Darmes auf, da die Zwischenräume durch Tight junctions versperrt sind.

Ein Beispiel für einen Rezeptor für Transzytose ist eine Gruppe von Fc-Rezeptoren. Sie befinden sich in der Plazenta und auf der apikalen Seite von kindlichem Darmepithel und transportieren durch Transzytose mütterliches IgG in den Fötus bzw. in das Kleinkind.

Siehe auch

Literatur

  • Bruce Alberts et al.: Lehrbuch der Molekularen Zellbiologie. Wiley-VCH, April 2005, ISBN 3-527-31160-2
  • Helmut Plattner, Joachim Hentschel: Zellbiologie. Thieme, Stuttgart Januar 2002, ISBN 3-13-106512-5
  • Gerald Karp: Molekulare Zellbiologie. Springer, Berlin März 2005, ISBN 3-540-23857-3

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Bläschen — Vesikel (von lateinisch vesicula „Bläschen“) sind: bestimmte, kugelförmige Anordnungen von oberflächenaktiven Molekülen in einer Flüssigkeit (Synonym: Liposom) intrazelluläre (in der Zelle gelegene) mikroskopisch kleine, rundliche bis ovale… …   Deutsch Wikipedia

  • Microfold cells — Bei M Zellen (M engl. für microfold; fold = „Falte“, micro = „klein“) handelt es sich um spezialisierte Epithelzellen, die in der Wand des Krummdarm (Ileum), einem Teil des Dünndarms, vorkommen. Sie spielen eine wichtige Rolle für die Funktion… …   Deutsch Wikipedia

  • Vesicula — Vesikel (von lateinisch vesicula „Bläschen“) sind: bestimmte, kugelförmige Anordnungen von oberflächenaktiven Molekülen in einer Flüssigkeit (Synonym: Liposom) intrazelluläre (in der Zelle gelegene) mikroskopisch kleine, rundliche bis ovale… …   Deutsch Wikipedia

  • Vesikel (Biologie) — Übergeordnet Organell Untergeordnet Proteinkomplexe …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”