- Zentriwinkel
-
Für viele Fragestellungen der Elementargeometrie, bei denen es um Winkel an Kreisen geht, lassen sich die im Folgenden erklärten Begriffe und Aussagen verwenden.
Inhaltsverzeichnis
Begriffe
Gegeben sei ein Kreisbogen mit den voneinander verschiedenen Endpunkten A und B.
- Umfangswinkel oder Peripheriewinkel nennt man einen Winkel , dessen Scheitel P auf demjenigen Kreisbogen liegt, der den gegebenen Kreisbogen zum vollständigen Kreis ergänzt.
- Mittelpunktswinkel: Ist M der Mittelpunkt des gegebenen Kreisbogens, so bezeichnet man den Winkel als den zugehörigen Mittelpunktswinkel (Zentriwinkel).
- Ein Sehnentangentenwinkel zum gegebenen Kreisbogen wird begrenzt von der Sehne [AB] und der Kreistangente im Punkt A bzw. B.
Viele Autoren von Geometrie-Lehrbüchern nehmen bei Umfangswinkeln, Mittelpunktswinkeln und Sehnentangentenwinkeln nicht Bezug auf einen gegebenen Kreisbogen, sondern auf eine gegebene Kreissehne [AB]. Legt man eine solche Definition zugrunde, so muss man zwei Arten von Umfangswinkeln unterscheiden, nämlich spitze und stumpfe Umfangswinkel. Als Mittelpunktswinkel definiert man in diesem Fall den kleineren der beiden Winkel, die von den Kreisradien [MA] und [MB] eingeschlossen werden. Die Formulierung der Sätze im nächsten Abschnitt muss bei Verwendung dieser Definition ein wenig variiert werden.
Kreiswinkelsatz
Der Mittelpunktswinkel (Zentriwinkel) eines Kreisbogens ist doppelt so groß wie einer der zugehörigen Umfangswinkel (Peripheriewinkel).
Der Beweis dieser Aussage ist in dem links skizzierten Spezialfall besonders einfach. Die beiden Winkel bei B und P sind als Basiswinkel in dem gleichschenkligen Dreieck MBP gleich groß. Der dritte Winkel des Dreiecks MBP (mit dem Scheitel M) hat die Größe . Der Satz über die Winkelsumme ergibt folglich und weiter, wie behauptet, .
Im allgemeinen Fall liegt M nicht auf einem Schenkel des Umfangswinkels. Die Gerade PM teilt dann Umfangswinkel und Mittelpunktswinkel in zwei Winkel (φ1 und φ2 bzw. μ1 und μ2), für die jeweils einzeln die Aussage gilt, da die Voraussetzungen des bewiesenen Spezialfalls erfüllt sind. Deshalb gilt die Aussage auch für den gesamten Umfangswinkel und den gesamten Mittelpunktswinkel. Außerdem ermöglicht die Gültigkeit des Peripheriewinkelsatzes (siehe unten) eine Überführung des allgemeinen Falles in den Spezialfall, ohne die Allgemeinheit des bereits für den Spezialfall erbrachten Beweises einzuschränken.
Weiterer Beweis im Wikibooks-Beweisarchiv
Sonderfall
Ein besonders wichtiger Sonderfall liegt vor, wenn der gegebene Kreisbogen ein Halbkreis ist: In diesem Fall ist der Mittelpunktswinkel gleich 180° (ein gestreckter Winkel), während die Umfangswinkel gleich 90°, also rechte Winkel sind. Damit erweist sich der Satz des Thales als Spezialfall des Kreiswinkelsatzes.
Umfangswinkelsatz (Peripheriewinkelsatz)
Alle Umfangswinkel (Peripheriewinkel) über einem Kreisbogen sind gleich groß. Dieser Kreisbogen heißt dann Fasskreisbogen.
Der Umfangswinkelsatz ist eine unmittelbare Konsequenz des Kreiswinkelsatzes: Jeder Umfangswinkel ist nach dem Kreiswinkelsatz halb so groß wie der Mittelpunktswinkel (Zentriwinkel). Also müssen alle Umfangswinkel gleich groß sein.
Allerdings ist es unter Umständen notwendig den Peripheriewinkelsatz auf anderem Wege zu beweisen. Da er ansonsten nicht als Bedingung in der Beweisführung des Kreiswinkelsatzes verwendbar ist. Der alternative Beweis erfolgt unter "mathe-online.at" [1]
Sehnentangentenwinkelsatz
Die beiden Sehnentangentenwinkel eines Kreisbogens sind so groß wie die zugehörigen Umfangswinkel (Peripheriewinkel) und halb so groß wie der zugehörige Mittelpunktswinkel (Zentriwinkel).
Beweis siehe unter Weblinks
Anwendung bei Konstruktionsaufgaben
Insbesondere der Umfangswinkelsatz lässt sich nicht selten für geometrische Konstruktionen verwenden. In vielen Fällen sucht man die Menge (den geometrischen Ort) aller Punkte P, von denen aus eine gegebene Strecke (hier [AB]) unter einem bestimmten Winkel erscheint. Die gesuchte Punktmenge besteht im Allgemeinen aus zwei Kreisbögen, den so genannten Fasskreisbögen.
Weblinks
- Alternativbeweis des Umfangswinkelsatzes , Landesbildungsserver Baden-Württemberg Der hier vorgeführte Beweis besticht durch seine Einfachheit und führt auf "natürliche Weise" auf die Zusammenhänge zwischen Umfangswinkel und Mittelpunktswinkel sowie auf die Besonderheit von Sehnenvierecken.
Literatur
- Max Koecher, Aloys Krieg: Ebene Geometrie, 3. Aufl., Springer-Verlag, Berlin 2007, ISBN 978-3-540-49327-3
Wikimedia Foundation.