Box-Muller-Verfahren

Box-Muller-Verfahren
Graphische Veranschaulichung der Box-Muller-Methode

Die Box-Muller-Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen.

Inhaltsverzeichnis

Idee

Bei dieser Methode werden zunächst zwei Standardzufallszahlen u1 und u2 benötigt. Diese lassen sich beispielsweise mit einem Zufallszahlengenerator erzeugen. Standardzufallszahlen unterliegen einer Rechteckverteilung mit den Parametern 0 und 1.

Erzeugung standardnormalverteilter Zufallszahlen

Es lässt sich zeigen, dass man nach folgendem Transformationsschritt daraus zwei standardnormalverteilte (stochastisch) unabhängige Zufallszahlen z1 und z2 erhält:

z_1 = r \cos \varphi = \sqrt{-2 \ln u_1} \cos ( 2 \pi u_2 )

und

z_2 = r \sin \varphi = \sqrt{-2 \ln u_1} \sin ( 2 \pi u_2 ).

Hierbei wurde die Inversionsmethode zur Transformation von u1 und u2 in die Polarkoordinaten r und \varphi ausgenutzt:

 r = \sqrt{-2 \ln u_1}

und

\varphi = 2 \pi u_2.

Bei der Anwendung der Inversionsmethode wurde berücksichtigt, dass bei Polarkoordinaten \varphi einer Rechteckverteilung mit den Parametern 0 und unterliegt und r einer Exponentialverteilung mit dem Parameter \tfrac{1}{2}.

Die bisherigen Transformationsschritte erzeugen zwei standardnormalverteilte Zufallszahlen. Eine Standardnormalverteilung ist ein Spezialfall der Normalverteilung, nämlich mit dem Erwartungswert μ = 0 und der Varianz σ2 = 1.

Um mit der Box-Muller-Methode Normalverteilungen mit beliebigen Parametern zu erzeugen, lassen sich die erhaltenen zi nach dem Muster

x_i = \mu + \sigma\,z_i

transformieren. In der obigen Notation steht π wie üblich für die Kreiszahl, sin für den Sinus, cos für den Kosinus und ln für den natürlichen Logarithmus.

Probleme

Verwendet man zur Erzeugung der ui einen linearen Kongruenzgenerator, so liegen die Paare (z1;z2) auf einer durch eine Spirale beschriebenen Kurve. Dieses Verhalten ist eng mit dem im Satz von Marsaglia beschriebenen Hyperebenenverhalten linearer Kongruenzgeneratoren verwandt.

Dieses Problem lässt sich umgehen, wenn statt des linearen Kongruenzgenerators ein inverser Kongruenzgenerator verwendet oder die Polar-Methode verwendet wird.

Fazit

Die Box-Muller-Methode erzeugt zunächst zwei stochastisch unabhängige und standardnormalverteilte Zufallszahlen, die sich dann in eine Normalverteilung mit beliebigen Parametern transformieren lassen.

Die Box-Muller-Methode erfordert die Auswertung von Logarithmen und trigonometrischen Funktionen, was auf einigen Rechnern sehr zeitaufwendig sein kann.

Alternativen

Weitere Möglichkeiten zur Erzeugung normalverteilter Zufallszahlen sind im Artikel Normalverteilung beschrieben.

Eine Alternative ist z.B. die Polar-Methode.[1]

Quellen und Fußnoten

  1. siehe Kinderman, A.J. und J.R. Ramage: Computer Generation of Normal Random Numbers, Jour. Amer. Stat. Assoc., 71(356), p. 893-896 (1976)

Literatur

  • George Edward Pelham Box, Mervin Edgar Muller: A note on the generation of random normal deviates. Ann. Math. Stat. 29. 1958) 610-611.
  • Donald Ervin Knuth: The Art of Computer Programming, Sec. 3.4.1, p. 117
  • O. Moeschlin, O., E. Grycko, C. Pohl und F. Steinert: Experimental Stochastics. Springer, 1998, ISBN 3-540-14619-9, Kapitel 1.4 Generating Sample Values

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Box-Muller-Algorithmus — Graphische Veranschaulichung der Box Muller Methode Die Box Muller Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen. Inhaltsverzeichnis 1 Idee …   Deutsch Wikipedia

  • Box-Muller-Transformation — Graphische Veranschaulichung der Box Muller Methode Die Box Muller Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen. Inhaltsverzeichnis 1 Idee …   Deutsch Wikipedia

  • Box-Müller-Methode — Graphische Veranschaulichung der Box Muller Methode Die Box Muller Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen. Inhaltsverzeichnis 1 Idee …   Deutsch Wikipedia

  • Box-Muller-Methode — Graphische Veranschaulichung der Box Muller Methode Die Box Muller Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen. Inhaltsverzeichnis 1 …   Deutsch Wikipedia

  • Box-Mueller-Methode — Graphische Veranschaulichung der Box Muller Methode Die Box Muller Methode (nach George Edward Pelham Box und Mervin Edgar Muller 1958) ist ein Verfahren zur Erzeugung normalverteilter Zufallszahlen. Inhaltsverzeichnis 1 Idee …   Deutsch Wikipedia

  • Black-Box-Modell — Die Regelungstechnik ist ein Gebiet der Ingenieurwissenschaft und Teilgebiet der Automatisierungstechnik. Sie befasst sich mit der gezielten Beeinflussung von physikalischen, chemischen, biologischen oder anderen Größen in Geräten, Anlagen,… …   Deutsch Wikipedia

  • Grey-Box-Modell — Die Regelungstechnik ist ein Gebiet der Ingenieurwissenschaft und Teilgebiet der Automatisierungstechnik. Sie befasst sich mit der gezielten Beeinflussung von physikalischen, chemischen, biologischen oder anderen Größen in Geräten, Anlagen,… …   Deutsch Wikipedia

  • White-Box-Modell — Die Regelungstechnik ist ein Gebiet der Ingenieurwissenschaft und Teilgebiet der Automatisierungstechnik. Sie befasst sich mit der gezielten Beeinflussung von physikalischen, chemischen, biologischen oder anderen Größen in Geräten, Anlagen,… …   Deutsch Wikipedia

  • Forkhead-Box-Protein P2 — Bändermodell eines Teils des FOXP2 Proteins im Komplex mit DNA, nach …   Deutsch Wikipedia

  • Gauss-Verteilung — Dichten normalverteilter Zufallsgrößen Die Normal oder Gauß Verteilung (nach Carl Friedrich Gauß) ist ein wichtiger Typ kontinuierlicher Wahrscheinlichkeitsverteilungen. Ihre Wahrscheinlichkeitsdichte wird auch Gauß Funktion, Gauß Kurve, Gauß… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”