Bivariant
Schlagen Sie auch in anderen Wörterbüchern nach:
bivariant — adjective Having two independent variables … Wiktionary
bivariant — bi·variant … English syllables
bivariant — (ˈ)bī+ adjective Etymology: bi (I) + variant : capable of twofold variation : having two degrees of freedom used of a system in which the number of components equals the number of phases; compare phase rule … Useful english dictionary
bi- — ♦ Élément, du lat. bis, indiquant le redoublement par répétition ou duplication. ⇒ deux; bis , di . ● bi ou bis Préfixe, du latin bis, deux fois, indiquant le redoublement, la répétition, la réciprocité. ● bi ou bis (homonymes) bis adjectif bi ,… … Encyclopédie Universelle
THERMODYNAMIQUE - Thermodynamique chimique — On peut dire qu’au milieu du siècle dernier les bases fondamentales de la thermodynamique classique et de la théorie de l’énergie étaient établies grâce aux travaux de V. Hess, S. Carnot, J. R. von Mayer, J. P. Joule, R. J. E. Clausius, lord… … Encyclopédie Universelle
bis- — ♦ Élément indiquant le redoublement (biscuit;⇒ bi , di ) ou ajoutant une nuance péjorative (bistourné). ● bi ou bis Préfixe, du latin bis, deux fois, indiquant le redoublement, la répétition, la réciprocité. ● bi ou bis (homonymes) bis adjectif… … Encyclopédie Universelle
Noncommutative topology — in mathematics is a term applied to the strictly C* algebraic part of the noncommutative geometry program. The program has its origins in the Gel fand duality between the topology of locally compact spaces and the algebraic structure of… … Wikipedia
Cyclic homology — In homological algebra, cyclic homology and cyclic cohomology are (co)homology theories for associative algebras introduced by Alain Connes around 1980, which play an important role in his noncommutative geometry. They were independently… … Wikipedia
Chow ring — In algebraic geometry, the Chow ring (named after W. L. Chow) of an algebraic variety is an algebraic geometric analogue of the cohomology ring of the variety considered as a topological space: its elements are formed out of actual subvarieties… … Wikipedia
KK-theory — This article is on the generalization of operator K theory and K homology. For the epistemological concept, see KK principle. In mathematics, KK theory is a common generalization both of topological K homology and K theory (more precisely… … Wikipedia