Estrichgips

Estrichgips
Gips
Gipskristallstufe aus Manitoba in Kanada
Chemische Formel Ca[SO4] • 2 H2O
Mineralklasse wasserhaltige Sulfate ohne fremde Anionen
VI/C.22-20 (nach Strunz)
29.6.3.1 (nach Dana)
Kristallsystem monoklin
Kristallklasse monoklin-prismatisch \ 2/m
Farbe farblos, weiß, gelblich, rötlich, grau, braun
Strichfarbe weiß
Mohshärte 2
Dichte (g/cm³) 2,2 bis 2,4
Glanz Glasglanz, Perlmutterglanz, Seidenglanz
Transparenz durchsichtig bis undurchsichtig
Bruch muschelig
Spaltbarkeit sehr vollkommen nach {010}, deutlich mit Faserbildung nach {111}
Habitus tafelige, prismatische, nadelige Kristalle; körnige, massige Aggregate
Häufige Kristallflächen {010}
Zwillingsbildung häufig; Schwalbenschwanz, Montmartre, Durchdringung
Kristalloptik
Brechzahl α=1,519-1,521 β=1,522-1,523 γ=1,529-1,530
Doppelbrechung
(optische Orientierung)
Δ=0,010 ; zweiachsig positiv
Winkel/Dispersion
der optischen Achsen
2vz ~ 58°
Pleochroismus farblos
Weitere Eigenschaften
Chemisches Verhalten in Wasser schwer löslich
Radioaktivität nicht radioaktiv
Magnetismus nicht magnetisch

Gips (chemische Bezeichnung Calciumsulfat, standardsprachlich Kalziumsulfat) ist ein sehr häufig vorkommendes Mineral aus der Mineralklasse der wasserhaltigen Sulfate ohne fremde Anionen. Es kristallisiert im monoklinen Kristallsystem mit der chemischen Zusammensetzung Ca[SO4] • 2 H2O und entwickelt meist tafelige, prismatische bis nadelige Kristalle, aber auch körnige bis massige Aggregate. Im Allgemeinen ist Gips farblos oder weiß, kann aber durch Aufnahme von Fremdionen oder Beimengungen unterschiedlicher Art (Sand, Bitumen) eine gelbliche, rötliche, graue oder braune Farbe annehmen. Seine Strichfarbe ist jedoch weiß.

Die Bezeichnung Gips wird synonym auch für das monomineralische Gestein gebraucht.

Inhaltsverzeichnis

Besondere Eigenschaften

Gips hat die sehr geringe Mohshärte von 2 und ist neben Halit ein Standardmineral auf der Härteskala nach Friedrich Mohs. Seine Dichte beträgt zwischen 2,2 und 2,4 und er ist im Gegensatz zu den oft vergesellschafteten Mineralen Halit und Calcit nur schwer in Wasser löslich. Die Löslichkeit in Wasser beträgt je nach Calciumsulfat-Modifikation 2,7 bis 8,8 g/l. Aus reiner wässriger Lösung kristallisiert Calciumsulfat unterhalb von 66 °C stets als Gips, oberhalb von 66 °C als Anhydrit. Bei Gegenwart anderer Ionen, z. B. Natrium, verschieben sich die Löslichkeitsgleichgewichte.

Abspaltung von Kristallwasser bei CaSO4 in der DTA

Beim Erhitzen geht das Kristallwasser verloren (TG-Kurve = Masseverlust, onset = Beginn der Wasserabspaltung, Peaks = Maxima der Reaktion) und es entsteht zuerst ein Hemihydrat (auch Halbhydrat bzw. Bassanit genannt) mit der chemischen Formel CaSO4 • ½ H2O, bei weiterem Wasserverlust schließlich Anhydrit III (CaSO4), das aber mineralogisch schlicht Anhydrit genannt wird.

Gips kann unter besonderen natürlichen Umständen einem gesteinsbildenden Prozess unterliegen. Durch Verdunstung von calciumsulfathaltigem Meerwasser fallen Gips und Anhydrit in früher Phase der Carbonatabscheidung aus. Primär sedimentiert dabei Gips. Das in größeren Schichten bzw. Aggregaten entstehende Gestein wird in der Petrographie zur Gruppe der Evaporite gezählt und ist auch unter dem Kulturbegriff Alabaster bekannt. Die Genese führt dabei zu kryptokristallinen oder kristallinen Ausbildungen mit einer Korngröße bis in den Zentimeterbereich.

Im Nahbereich von solchen Lagerstätten können kristalline Neubildungen des Minerals Gips entstehen (Marienglas genannt).

Etymologie und Geschichte

Alabasterstatue aus dem Alten Ägypten

Schon in der Jungsteinzeit wurde Gips als Baumaterial verwendet. Bereits 7000 v. Chr. wurde in der kleinasiatischen Stadt Çatalhöyük Gips zur Verzierung der Innenräume verwendet. In den Keilschriften der Sumerer und Babylonier finden sich Hinweise für die Verwendung von Gips, ebenso in Jericho (6000 v. Chr.). Ab 3000 v. Chr. wurde in Uruk und später in Ägypten Gips auch als Mörtel verwendet, dem Kalk oder Steine als Verunreinigung oder zur Streckung beigemengt waren. Beispielsweise wurde bei der Sphinx (2700–2600 v. Chr.) für bestimmte Arbeiten ein kalkhaltiger Gipsmörtel verwendet. Auch lichtdurchlässige Scheiben aus Alabaster waren bei den Ägyptern bekannt. Die minoische Kultur verwendete Gipsmörtel (Palast von Knossos, 2100-1800 v. Chr.) und der griechische Naturforscher Theophrastos von Eresos beschrieb in einer Abhandlung die Herstellung von Gips. In Griechenland wurde Gips wegen seiner leichten Bearbeitbarkeit auch für Bauornamente an den Häusern genutzt.

Der Name Gips ist aus dem griechischen Nomen γύψος („gypsos“, Gips, Kreide), abgeleitet das seinerseits aus dem semitischen Sprachbereich übernommen wurde. Das lateinische Wort lautet gypsus. Weitere antike Bezeichnungen für Gips sind selenites (Mondstein), alabastron und labis specularis (Spiegelstein).

Die Römer verwendeten Gips nur für Ornamentik im Innenbereich, da sie mit dem wesentlich dauerhafteren Kalk vertraut waren.

In Europa nahm die Verwendung von Gips ab dem 11. Jahrhundert wieder zu, Gips wurde zum Verfugen von Mauerwerk und zum Ausfachen von Innenwänden und ab dem 17. Jahrhundert für Stuckarbeiten verwendet.

Varietäten und Modifikationen

Sandrose

Gips kommt sowohl massiv, in feinkörniger Form als farbloser, weißer, gelber, roter oder grauer Alabaster vor, als auch feinfaserig als Fasergips oder Atlasspat. Daneben finden sich manchmal durchsichtige Kristalltafeln, die als Marienglas oder Fraueneis (Selenit) bekannt sind.

Gefunden wird das Mineral in verschiedenen Kristallformen: So sind die Kristalle oft sehr groß, plastisch biegsam, vollkommen spaltbar, dicktafelig, oft krummflächig, manchmal auch verzwillingt; andererseits kommt Gips auch rosettenartig verwachsen als so genannte Sandrose, Gipsrose, Wüstenrose oder Barytrose vor.

Als Polyhalit wird eine Gips-Varietät bezeichnet, welche mit Kaliumsulfat und Magnesiumsulfat verbunden, in den Steinsalzlagern von Staßfurt, Berchtesgaden und Ischl vorkommt. Alabasteraugen entstehen aus Calciumsulfat, das sich an einzelnen Stellen innerhalb eines Muttergesteins sammelte, bevor sich dieses gefestigt hatte, und dann später zu Alabasterkugeln verhärtete.

Natürliche Entstehung und Fundorte

Anhydrit aus Chihuahua/Mexiko

Gips entstand geologisch durch Auskristallisieren aus Calciumsulfat-übersättigtem Meerwasser, und zwar wegen seiner geringen Wasserlöslichkeit als erstes Mineral noch vor dem Anhydrit. Man findet ihn aber auch als Verwitterungsprodukt sulfidischer Erze und in vulkanischen Schloten, wo er durch Reaktion von austretender Schwefelsäure mit Kalkstein entstehen kann.

Gips ist weit verbreitet. Die natürlichen Lagerstätten sind aber meist mit Beimengungen versehen. Wichtige Fundorte sind unter anderem Mexiko, Algerien, Spanien, Italien und die USA.

In Deutschland ist das Mineral unter anderem im Neckar-Odenwald-Kreis (Umgebung von Mosbach), bei Osterode am Harz, Eisleben in Sachsen-Anhalt, Borken bei Kassel und im Segeberger Kalkberg zu finden, als Bestandteil des Gipskeuper auch im Steigerwald, der Frankenhöhe und nördlich der Schwäbischen Alb.

In Österreich gibt es Lagerstätten in Preinsfeld bei Heiligenkreuz, Puchberg am Schneeberg, Wienern am Grundlsee, Spital am Pyhrn, Moosegg bei Golling, Abtenau und Weißenbach am Lech.

In Chihuahua (Mexiko) wurden Gips-Riesenkristalle von bis zu 15 m Länge entdeckt.

Herstellung

Historisch

Im Mittelalter wurde gipshaltiges Gestein in Steinbrüchen oder bergmännisch abgebaut, sortiert und in Brechmühlen weiter zerkleinert, sodass es dem Brenn- oder Kochprozess zugeführt werde konnte. Die Gipsbrennereien betrieben Meiler- oder Grubenöfen, die mit Holz oder Torf befeuert wurden. Anschließend wurde der Gips in einer Gipsmühle fein gemahlen. Ein anderes Verfahren bestand darin, im Stollen ein Feuer anzufachen und anschließend den gebrannten Gips herauszuschlagen.

Diese Tätigkeiten wurden zumeist von Bauern oder Müllern in der Zeit der Unterbeschäftigung erledigt. Je nach Reinheit und Feinheit unterschied man Baugips, Estrichgips und Stuckgips.

Industriell

Weil Calciumsulfat bei vielen chemischen Prozessen (in der Regel in Form von Gips) als Sekundärprodukt entsteht, beispielsweise bei der Citronensäureherstellung, erübrigt sich eine gezielte industrielle Herstellung im größeren Stil. Der klassische Prozess ist die Fällung aus schwefelsaurem Wasser mit Kalkmilch oder Kalkstein:

\mathrm{H_2SO_4  +  CaCO_3  \longrightarrow CaSO_4  +  H_2O  +  CO_2 }

Schon Goethe, ein passionierter Naturwissenschaftler und Chemiker, beschrieb diesen Prozess in seinem Roman Die Wahlverwandtschaften:

Was wir Kalkstein nennen, ist eine mehr oder weniger reine Kalkerde, innig mit einer zarten Säure verbunden, die uns in Luftform bekannt geworden ist. Bringt man ein Stück solchen Steines in verdünnte Schwefelsäure, so ergreift diese den Kalk und erscheint mit ihm als Gips; jene zarte, luftige Säure hingegen entflieht - wobei der dichtende Chemiker Kohlendioxid meinte.

Gips entsteht auch bei vielen Abwasserreinigungsverfahren, wenn es um die Neutralisation von sulfathaltigen Prozessabwässern oder schwefelsauren Beizen geht. Ebenso entsteht Gips oft als ein Endprodukt der Rauchgasentschwefelung der Abgase von Kraftwerken. In der Regel - je nach Verunreinigungen - können solche Gipse (entwässerter Filterkuchen) in der Zementindustrie oder zur Weiterverarbeitung zu Calciumsulfat-Modifikationen (Hydraten) verwendet werden.

Calciumsulfat-Modifikationen

  • α-Halbhydrat (CaSO4 • ½ H2O) entsteht in einem geschlossenen Gefäß (Autoklav) unter Nassdampfatmosphäre, bzw. drucklos in Säuren und wässrigen Salzlösungen. Er ist Ausgangsstoff für härtere Gipse (Typ III, IV und V) und benötigt weniger Wasser, aber mehr Zeit zum Abbinden.
Gipsbrennerei, Théodore Géricault, 1822-1823
  • β-Halbhydrat (CaSO4 • ½ H2O) entsteht beim Brennen in einem offenen Gefäß unter normaler Atmosphäre. Beim Vermischen mit Wasser erfolgt innerhalb von Minuten eine Hydratation zum Dihydrat. Er ist Ausgangsstoff für die weicheren Gipse.

Im Fall von α- und β-Halbhydrat handelt es sich um unterschiedliche kristalline Formen des Halbhydrats.

  • Anhydrit III (CaSO4 • 0,x H2O) entsteht bei Temperaturen bis 300 °C aus dem Halbhydrat. Bei Vorhandensein von Wasser, auch Luftfeuchtigkeit, bildet sich sehr schnell Halbhydrat.
  • Anhydrit IIs (CaSO4) entsteht bei Temperaturen zwischen ca. 300 bis 500 °C, das s steht für „schwerlöslich“. Beim Vermischen mit Wasser erfolgt die Hydratation innerhalb von Stunden und Tagen.
  • Anhydrit IIu (CaSO4) bildet sich bei Temperaturen von 500 bis 700 °C aus dem Anhydrit IIs, das u steht dabei für „unlöslich“.
  • Anhydrit I (CaSO4) ist die Hochtemperaturmodifikation des Gipses, sie bildet sich bei 1180 °C.

Verwendung

als Rohstoff

Gips als Rohstoff wird vorwiegend bergmännisch als Gipsgestein gewonnen, fällt aber heute auch häufig als Nebenprodukt verschiedener chemischer großtechnischer Verfahren an.

Technisch nutzt man das Vermögen des Gipses, das durch Erhitzen (Brennen) teilweise oder ganz verlorene Kristallwasser beim Anrühren mit Wasser wieder aufzunehmen und dabei abzubinden. Bei Erhitzen auf etwa 110ºC entsteht so genannter gebrannter Gips (das oben erwähnte Hemihydrat), bei 130 bis 160 ºC Stuckgips, ein Gemisch aus viel Hemihydrat und wenig Anhydrit. Bei 290 - 900 ºC entsteht Anhydrit, wobei das Kristallwasser ganz ausgebrannt ist. Sehr hoch erhitzter Gips wird auch „totgebrannter Gips“ (Analin) genannt, weil er mit Wasser nicht mehr abbindet.

In der heutigen Bautechnik wird Gips (als Hemihydrat oder Mehrphasengips) meist in Form von REA-Gips für Gipswandbauplatten für Zwischenwände als auch für Gipskartonplatten für den Trockenbau, als Grundstoff für verschiedene Putze und Trockenestriche verwendet, daneben auch als Grundierung und Füllmittel. Durch Vermengen mit Kalk erzeugt man für Stuckarbeiten Gipskalk, der formbar wie Plastilin wird, bevor er aushärtet.

In der Medizin wird Gips für den Gipsverband verwendet: Dabei werden die betroffenen Gliedmaßen oder Gelenke zur Ruhigstellung und Stabilisierung mit feuchten Gipsbinden umwickelt, die dann innerhalb von Minuten aushärten und nach ungefähr zwölf Stunden voll belastbar sind.

In der Zahntechnik ist Gips der wichtigste Rohstoff für Dentalgipse zur Herstellung von Modellen, die aus Abformungen der Mund- und Zahnsituation erstellt werden. Nach der Norm für Dentalgipse EN ISO 6873 werden fünf Typen unterschieden:

  • Typ I (Abformgips, β-Halbhydrat)
  • Typ II (Alabastergips, β-Halbhydrat)
  • Typ III (Hartgips, α-Halbhydrat)
  • Typ IV (Superhartgips mit niedriger Expansion, bis 0,15%, α-Halbhydrat)
  • Typ V (Superhartgips mit hoher Expansion, bis 0,3 %, α-Halbhydrat)

International werden eher die genauen Spezifikationen angegeben, insbesondere das Mischungsverhältnis (ml Wasser je 100g Gips) und die Druckfestigkeit (in MPa, bzw. N/mm nach bestimmter Zeit und im trockenen Zustand). Je nach Verwendungszweck wichtig ist auch die prozentuale Abbindeexpansion und die Dauer der Verarbeitungs- sowie Abbindezeiten.

In der bildenden Kunst wird Gips sehr oft für die Erstellung von Skulpturen verarbeitet, in der Technik für die Erstellung von Formen und Modellen verwendet. Marienglas spielt auch heute noch bei Kirchen- und Alabaster-Restaurierungen eine wichtige Rolle, während der totgebrannte Gips auch gerne als Zusatzstoff (Streckmittel) für Malerfarben verwendet wird, da er zu billigeren Produkten führt, ohne die Farbqualität stark zu beeinträchtigen. Auch wird es für Grundierungen in der Tafelmalerei oder auch als Goldgrund (Assis) verwendet. Gips kommt in diesem Zusammenhang auch unter Namen wie Alabasterweiß, Analin, Anhydrit, Bologneser Kreide, Elektrikergips, Federspat, Leichtspat oder Marienglas, Plaster of Paris in den Handel.

Auch Tafelkreide bzw. Malkreide besteht in Deutschland aus Gips.

als Baustoff

Da der abgebundene Gips eine gewisse Wasserlöslichkeit besitzt, werden Gipsbaustoffe überwiegend nur für den Innenausbau Verwendung finden. Im geschützten Außenbereich müssen Gipsbaustoffe imprägniert werden. Früher wurde Gips auch für Stuckarbeiten an Fassaden eingesetzt und mit Leinöl imprägniert. Weil Gips hygroskopisch (wasseranziehend) ist und daher bei schlechtem Einbau, schlechter Pflege oder Lüftung zu Verfärbungen und Verpilzungen neigt, ist er im Nasszellen- und im Kellerbereich nur eingeschränkt zu verwenden. Bei Renovierungsarbeiten wird Stuckgips verwendet, um kleine Risse und Löcher in den Wänden zu schließen. Im Neubau werden Gipsputze oder auch Gipskartonplatten verwendet, um auf rauem und unebenem Mauerwerk eine streich- und tapezierfertige Oberfläche herzustellen. Daneben beruhen auch manche Estriche auf einer Basis aus Gips. Statisch nicht belastete Trennwände werden heute oft aus Gipskartonplatten mit Metallunterkonstruktion oder aus Gipswandbauplatten hergestellt. Daneben wird Gips zum Befestigen von Unterputzelementen für Elektroinstallationen in Rohbauwänden verwendet. Die Geschwindigkeit des Abbindens wird bei alkalischen Formulierungen z.B. Gipsputz durch Zugabe von Wein- oder Zitronensäure reguliert. Neutrale Formulierungen können mit Eiweißverbindungen verzögert werden. Die Beschleunigung des Abbindevorgangs wird durch Zugabe von Kaliumsulfat oder fein aufgemahlenem Gips erreicht.

Im baulichen Brandschutz verwendet man bevorzugt Gips, da er bei relativ geringem Gewicht einen großen Feuerwiderstand bietet; den Schutz bewirkt das Kristallwasser des Dihydrats, das im Brandfall verdampft und auf der dem Brand zugewandten Seite einen schützenden Dampfschleier bildet.

Der Baustoff wurde auch namensgebend für den Beruf des Gipsers (heute Stuckateur).

als Modell- und Formengips

Bei der Anwendung als Modell- oder Formengips, z.B. bei Bozzettis, werden erhöhte Anforderungen an die Reinheit der Gipsrohstoffe und an die Aufbereitung gestellt. Durch eine feinere Aufmahlung und geringere Anteile an Fremdmineralien wird eine gleichmäßigere Oberflächenstruktur erzielt. Durch die Verwendung von α-Halbhydrat (entsteht unter Wasserdampfdruck und hat eine höhere Dichte) können höhere Festigkeiten der Formteile erreicht werden. In diesem Zusammenhang wird auch von Hartgips gesprochen.

Weitere Anwendungsgebiete

Zur Herstellung von Tofu wird das Protein aus gemahlenen Sojabohnen mit Calciumsulfat zur Gerinnung gebracht. Des Weiteren wird Calciumsulfat auch als Lebensmittelzusatzstoff (E 516) eingesetzt. Als eines der zwölf Schüßler-Salze findet es als Heilmittel Verwendung.

Trivia

Da er weltweit reichhaltig vorkommt, hat es die sprichwörtliche kriegerische Auseinandersetzung um den Rohstoff Gips in der Historie niemals gegeben, worauf sich auch der Sinn des Sprichwortes „Erzähl' mir nichts vom Gipskrieg“ gründet.

Siehe auch

Literatur

  • Martin Okrusch, Siegfried Matthes: Mineralogie. 7. Auflage. Springer Verlag, Berlin 2005, ISBN 3-540-23812-3
  • Edition Dörfler: Mineralien Enzyklopädie. Nebel Verlag, ISBN 3-89555-076-0
  • Stefan Weiß: Das große Lapis Mineralienverzeichnis. 4. Auflage. Christian Weise Verlag, München 2002, ISBN 3-921656-17-6
  • Fritz Scheidegger, Aus der Geschichte der Bautechnik, Band 1. Verlag Birkhäuser, Basel-Boston-Berlin 1990, ISBN 3-7643-2385-X

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Estrichgips — Ẹs|trich|gips, der: Gips zur Herstellung von ↑Estrich (1) …   Universal-Lexikon

  • Zement — (concrete; ciment; cemento). Unter Zement versteht man im allgemeinen pulverförmige Körper, die beim Anrühren mit Wasser einen Brei bilden, der auch unter Wasser in einen starren Zustand übergeht und dabei andere feste Körper zu verkitten… …   Enzyklopädie des Eisenbahnwesens

  • Gips — (aus mittellat. gypsum, griech. gýpsos), Mineral, wasserhaltiger schwefelsaurer Kalk, CaSO4+2H2O, mit 32,55 Kalk, 46,52 Schwefelsäure und 20,98 Wasser, bildet monokline, säulen oder tafelförmige, auch linsenförmige, bis fußgroße Kristalle, die… …   Meyers Großes Konversations-Lexikon

  • Baugips — ist ein Sammelbegriff für Bindemittel, die vor allem für Putz , Stuck und Estricharbeiten verwendet werden. Er wird auch bei der Herstellung von Gipsbauplatten eingesetzt.[1] Inhaltsverzeichnis 1 Herstellung 2 Baugipsarten nach DIN V 18550 …   Deutsch Wikipedia

  • Analin — Gips Gipskristallstufe aus Manitoba in Kanada Chemische Formel Ca[SO4] • 2 H2O …   Deutsch Wikipedia

  • Atlasspat — Gips Gipskristallstufe aus Manitoba in Kanada Chemische Formel Ca[SO4] • 2 H2O …   Deutsch Wikipedia

  • Bologneser Kreide — Gips Gipskristallstufe aus Manitoba in Kanada Chemische Formel Ca[SO4] • 2 H2O …   Deutsch Wikipedia

  • Fasergips — Gips Gipskristallstufe aus Manitoba in Kanada Chemische Formel Ca[SO4] • 2 H2O …   Deutsch Wikipedia

  • Federspat — Gips Gipskristallstufe aus Manitoba in Kanada Chemische Formel Ca[SO4] • 2 H2O …   Deutsch Wikipedia

  • Gips — Gipskristallstufe aus Friedrichroda, Thüringen Chemische Formel Ca[SO4] • 2H2O Mineralklasse Sulfate 7.CD.40 (8. Auflage: VI/C.22 20) (nach Strunz) 29.06.03.01 (nach …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”