- Kartesisch abgeschlossene Kategorie
-
Eine (mathematische) Kategorie heißt kartesisch abgeschlossen, wenn – grob ausgedrückt – die Morphismenmengen wieder Objekten der Kategorie entsprechen.
Falls in einer Kategorie mit endlichen Produkten der Produktfunktor
einen rechtsadjungierten Funktor besitzt, so heißt das Objekt X exponentiell. Der adjungierte Funktor wird dann häufig
- oder
geschrieben.
Sind alle Objekte exponentiell, heißt die Kategorie kartesisch abgeschlossen.
Beispiele
- In der Kategorie Set der Mengen (und Abbildungen) ist kartesisch abgeschlossen. Der erforderliche rechtsadjungierte Funktor ist durch gegeben, die die Adjungiertheit liefernde natürliche Äquivalenz dadurch, dass auf mit abgebildet wird.
- Die Kategorie Ab der abelschen Gruppen ist nicht kartesisch abgeschlossen. Zwar tragen die Morphismenmengen durch punktweise Addition ihrerseits die Struktur einer abelschen Gruppe, jedoch sind nicht alle abelschen Gruppen exponentiell.
- Die Kategorie Top der topologischen Räume und stetigen Abbildungen ist nicht kartesisch abgeschlossen, aber die Kategorie der kompakt erzeugten separierten topologischen Räume (und stetigen Abbildungen) ist es (ein topologischer Raum ist kompakt erzeugt, falls die entsprechende Topologie final ist bezüglich der Familie der Inklusionen aller kompakten Teilmengen, insbesondere sind alle pseudometrischen und alle lokalkompakten Räume kompakt erzeugt). Die exponentiellen Objekte in Top sind in Verallgemeinerung lokaler Kompaktheit als so genannte quasilokalkompakte Räume charakterisiert.
Anwendungen
In kartesisch abgeschlossenen Kategorien wird häufig folgende Konstruktion verwendet. Zu einem Objekt X betrachtet man die Menge aller Morphismen von X in einen besonderen Raum Q. Häufig wird Q sehr einfach gewählt: in Set betrachtet man Q = {0,1}, in BanSp1 (Banachräume mit stetigen linearen Abbildungen) wählt man oft als Q die reellen Zahlen und in CBanAlg (kommutative komplexe Banachalgebren mit Einheit und normreduzierenden Algebrenhomomorphismen) nimmt man die komplexen Zahlen. Der so entstandene Funktionenraum X * wird häufig Dualraum genannt. Der Funktor, der jedem Objekt X das X * zuordnet und jedem Morphismus f: X → Y den Morphismus f *: Y * → X * vermöge f *(l):= l o f zuordnet, wird dualer Funktor, adjungierter Funktor oder exponentieller Funktor genannt, wobei jeder dieser Namen auch eine andere Bedeutung hat.
Diese Konstruktion ermöglicht es, Fragen an ein Objekt X in Fragen an das Objekt X* zu transformieren, die dann manchmal leichter zu beantworten sind. Besonders komfortabel sind die reflexiven Objekte, für die (X*)*=X gilt.
Wikimedia Foundation.