Kehrbruch

Kehrbruch
Graph der Kehrwertfunktion (Hyperbel) y=f(x)=\tfrac1x.

Der Kehrwert, auch Kehrzahl, einer Zahl ist diejenige Zahl, die mit sich selbst multipliziert genau eins ergibt. Den Kehrwert eines Bruches erhält man, wenn man bei diesem Nenner und Zähler miteinander vertauscht. Eine alternative Bezeichnung ist reziproker Wert.

Der Kehrwert der natürlichen Zahl n ist \tfrac 1n, also ein Stammbruch.

Allgemein ist der Kehrwert eines rationalen Bruchs \tfrac ab mit a, b\neq 0 gleich \tfrac ba. Null hat keinen reellen Kehrwert.

Da jede von 0 verschiedene Zahl x als Bruch \tfrac{x}{1} geschrieben werden kann, beträgt ihr Kehrwert \tfrac{1}{x} oder x − 1.

Die Kehrwertfunktion ist eine Involution, d. h. der Kehrwert des Kehrwerts von a ist wieder a.

Beispiele

Der Kehrwert des Bruchs \tfrac{2}{5} ist \tfrac{5}{2} .

Verallgemeinerung

Eine Verallgemeinerung des Kehrwerts ist das multiplikativ Inverse x − 1 eines Elements x eines Ringes, das durch die Eigenschaft x^{-1} \cdot x=x\cdot x^{-1} =1 definiert ist.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Kehrwert — Zähler und Nenner eines Bruchs Der Graph der Kehrwertfunktion ist e …   Deutsch Wikipedia

  • Stokes-Einstein-Gleichung — Im Bereich der kinetischen Gastheorie ist die Einstein Smoluchowski Beziehung, auch Einstein Gleichung genannt, eine Beziehung, die zuerst Albert Einstein (1905) und danach Marian Smoluchowski (1906) in ihren Schriften zur Brownschen Bewegung… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”