Mehrkörperproblem

Mehrkörperproblem

Das Dreikörperproblem der Himmelsmechanik besteht darin, eine Lösung für den Bahnverlauf von drei Körpern unter dem Einfluss ihrer gegenseitigen Anziehung (Gravitation) zu finden. Das Dreikörperproblem galt seit den Entdeckungen von Johannes Kepler und Nikolaus Kopernikus als eines der schwierigsten mathematischen Probleme, mit dem sich im Laufe der Jahrhunderte viele bekannte Mathematiker wie Leonhard Euler, Joseph-Louis Lagrange, Thorvald Nicolai Thiele, George William Hill und Henri Poincaré beschäftigten. Den einfacheren Sonderfall, dass einer der drei Körper eine verschwindend kleine Masse hat und seine Wirkung auf die beiden anderen vernachlässigt werden kann, bezeichnet man als eingeschränktes Dreikörperproblem. Das Zweikörperproblem ist durch die Keplerschen Gesetze streng lösbar. Dagegen sind die Integrale im Fall von n \geq 3 Himmelskörpern keine algebraischen Integrale mehr (Satz von Bruns bzw. Poincaré) und sind nicht mehr mit elementaren Funktionen lösbar. Karl Frithiof Sundman konnte Anfang des 20. Jahrhunderts als erster eine analytische Lösung des Dreikörperproblems in Form einer konvergenten Potenzreihe angeben, unter der Annahme, dass der Gesamtdrehimpuls des Systems nicht verschwindet und es deshalb nicht zu einem Dreierstoß kommt.

Die Stabilität eines Dreikörpersystems wird durch das KAM-Theorem [1] beschrieben. Näherungslösungen sind unter anderem möglich, wenn die Masse eines der Himmelskörper klein ist:

  • Man löst das Dreikörperproblem dann iterativ, heutzutage mit Computern, oder
  • berechnet Bahnstörungen, welche der kleinste (leichteste) Körper durch die größeren (schwereren) erleidet.
  • Exakt lösbar ist es jedoch bei Gleichgewicht der Schwerkraft zwischen den großen (schwereren) Körpern, – in den Lagrange-Punkten L1 bis L5. Der innere Punkt L1 wird beispielsweise in der Raumfahrt zur Sonnenforschung verwendet. Das SOHO-Sonnenobservatorium befindet sich dort.
  • Für den Sonderfall dreier gleicher Massen gibt es eine weitere Lösung, bei der die Objekte auf einer gemeinsamen Bahn, die die Form eines „\infty“ hat, hintereinander her laufen.

Allgemeine Mehrkörperprobleme löst man als Mehrkörpersimulation.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Mehrkörperproblem — Mehrkörperproblem,   Vielkörperproblem, n Körperproblem, Physik und Astrophysik: das Problem der Beschreibung von Systemen, die aus mehr als zwei, als Massepunkte idealisierten Körpern oder Teilchen bestehen, einschließlich der Möglichkeit von… …   Universal-Lexikon

  • Mehrkörperproblem — daugelio kūnų problema statusas T sritis fizika atitikmenys: angl. many body problem vok. Mehrkörperproblem, n rus. проблема многих тел, f pranc. problème de plusieurs corps, m …   Fizikos terminų žodynas

  • Bahndaten — Unter Bahnbestimmung versteht man die Berechnung der Umlaufbahn eines Himmelskörpers oder Satelliten aus den Messresultaten irdischer oder im Weltraum befindlicher Observatorien. Für diese Standardaufgabe der Himmelsmechanik reicht es nicht aus,… …   Deutsch Wikipedia

  • Scheinbare Bewegung — Das Attribut scheinbar hat in der Astronomie eine vom umgangssprachlichen Gebrauch abweichende Bedeutung. Scheinbar im astronomischen Sinne deutet keinen Zweifel an der Realität oder Zuverlässigkeit einer betrachteten Größe an. Es handelt sich um …   Deutsch Wikipedia

  • Vielkörperproblem — Vielteilchentheorie (englisch Many Body Theory oder Many Body Problem) ist die quantenmechanische Beschreibung einer sehr großen Zahl miteinander wechselwirkender Mikroteilchen (Bosonen, Fermionen) und deren kollektiven Verhaltens. Ein solches… …   Deutsch Wikipedia

  • Vielteilchenphysik — Vielteilchentheorie (englisch Many Body Theory oder Many Body Problem) ist die quantenmechanische Beschreibung einer sehr großen Zahl miteinander wechselwirkender Mikroteilchen (Bosonen, Fermionen) und deren kollektiven Verhaltens. Ein solches… …   Deutsch Wikipedia

  • Vielteilchensystem — Vielteilchentheorie (englisch Many Body Theory oder Many Body Problem) ist die quantenmechanische Beschreibung einer sehr großen Zahl miteinander wechselwirkender Mikroteilchen (Bosonen, Fermionen) und deren kollektiven Verhaltens. Ein solches… …   Deutsch Wikipedia

  • Гейзенберг Вернер — Гейзенберг, Хайзенберг (Heisenberg) Вернер (р. 5.12.1901, Вюрцбург), немецкий физик, один из создателей квантовой механики. В 1923 окончил Мюнхенский университет, где слушал лекции А. Зоммерфельда. В 1923≈27 ассистент М. Борна. В 1927≈41… …   Большая советская энциклопедия

  • Гейзенберг —         Хайзенберг (Heisenberg) Вернер (р. 5.12.1901, Вюрцбург), немецкий физик, один из создателей квантовой механики (См. Квантовая механика). В 1923 окончил Мюнхенский университет, где слушал лекции А. Зоммерфельда. В 1923 27 ассистент М.… …   Большая советская энциклопедия

  • Exchange interaction — In physics, the exchange interaction is a quantum mechanical effect without classical analog which increases or decreases the expectation value of the energy or distance between two or more identical particles when their wave functions overlap.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”