Quabla

Quabla

Der d’Alembert-Operator \Box (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box-Operator oder Wellenoperator genannt.

Inhaltsverzeichnis

Definition

Im Rahmen der speziellen Relativitätstheorie (SRT) wird der Vierergradient durch


\partial_\mu=\left(\partial_{ct},\nabla \right)=\left(\partial_{ct},\partial_x,\partial_y ,\partial_z \right)
.

definiert. Die kontravarianten Komponenten ergeben sich durch Heraufziehen des kovarianten Index mit:


\partial^\mu=\eta ^{\mu \nu}\partial_{\nu}=\left(\partial_{ct},-\partial_x,-\partial_y ,-\partial_z \right)

Durch Kombination der beiden Operatoren lässt sich der lorentzinvariante d’Alembert-Operator bilden:


\Box := \partial^\mu \partial_\mu = \frac{\partial ^2}{c^2\partial t^2} - \frac{\partial ^2}{\partial x^2}
- \frac{\partial ^2}{\partial y^2} - \frac{\partial ^2}{\partial z^2} =
\frac{\partial ^2}{c^2\partial t^2} - \Delta

Er enthält nur zweite Ableitungen.

Vorzeichenkonventionen

Wie in der SRT üblich sind die Vorzeichen von der Signatur der Metrik abhängig. Oft wird in der SRT die Konvention (+,−,−,−) für die Signatur der Minkowski-Metrik verwendet, ansonsten benutzt man die Konvention (−,+,+,+). Für die erste Signatur ergibt sich der d’Alembert-Operator, wie oben bereits gezeigt, zu:


\Box = \frac{\partial ^2}{c^2\partial t^2} - \Delta

Für die andere Signatur ergibt sich analog:


\Box = \Delta - \frac{\partial ^2}{c^2\partial t^2}

Wellengleichung

Ursprünglich kommt der d'Alembert-Operator aus der Elektrodynamik und ergibt sich bei der Herleitung der Wellengleichung. Hieran ist deutlich zu erkennen, dass es sich bei der Elektrodynamik bereits um eine relativistische Theorie handelte, noch ehe man die SRT kannte. Zudem ist der d'Alembert-Operator ein Lorentz-Skalar und somit invariant unter Lorentz-Transformationen. Er spielt damit auch eine wichtige Rolle in der relativistischen Elektrodynamik. Unter Verwendung des d'Alembert-Operators kann für eine zweimal differenzierbare Funktion f(x,t) die Wellengleichung in einer sehr kompakten Form geschrieben werden


\Box f = 0

Literatur

  • Torsten Fließbach: Elektrodynamik. Lehrbuch zur theoretischen Physik, 3. Auflage. Spektrum Akademischer Verlag

Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Quabla-Operator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

  • D'Alembert operator — In special relativity, electromagnetism and wave theory, the d Alembert operator (represented by a box: ), also called the d Alembertian or the wave operator, is the Laplace operator of Minkowski space. The operator is named for French… …   Wikipedia

  • Box-Operator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

  • D'Alembert-Operator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

  • D'Alembertoperator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

  • D'Alembertscher Operator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

  • Differenzialoperator — Ein Differentialoperator ist in der Mathematik eine Abbildung, die einer Funktion eine Funktion zuordnet und die Ableitung nach einer oder mehreren Variablen enthält. So ist d / dx in ein Differentialoperator. Differentialoperatoren lassen sich… …   Deutsch Wikipedia

  • D’Alembert-Operator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

  • D’Alembertoperator — Der d’Alembert Operator (nach Jean Baptiste le Rond d’Alembert) ist ein Differentialoperator, der sich aus der Verallgemeinerung des Gradienten im vierdimensionalen Minkowskiraum ergibt. Er wird auch Quabla, Viereckoperator, Box Operator oder… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”