Rarita-Schwinger-Gleichung

Rarita-Schwinger-Gleichung

In der theoretischen Physik ist die Rarita-Schwinger Gleichung eine relativistische Feldgleichung für Spin-3/2-Fermionen. Sie ist ähnlich aufgebaut wie die Dirac-Gleichung für Spin-1/2-Fermionen und kann aus dieser hergeleitet werden. Sie wurde erstmals 1941 von William Rarita und Julian Schwinger formuliert und veröffentlicht. In einer modernen Notation wird sie wie folgt angeschrieben[1]:

 \left ( \epsilon^{\mu \nu \rho \sigma} \gamma_5 \gamma_\nu \partial_\rho + m \sigma^{\mu \sigma} \right)\psi_\sigma = 0

Dabei ist  \epsilon^{\mu \nu \rho \sigma} das Levi-Civita-Symbol, γ5 und γν sind Dirac-Matrizen, m ist die Ruhemasse des Fermions, \sigma^{\mu \nu} \equiv i/2\left [ \gamma^\mu , \gamma^\nu \right ] und ψσ ist ein vektorwertiger Spinor mit zusätzlichen Komponenten im Vergleich zu den vier Komponenten des Spinors in der Dirac-Gleichung. Die Darstellung entspricht dabei der \left(\tfrac{1}{2},\tfrac{1}{2}\right)\otimes \left(\left(\tfrac{1}{2},0\right)\oplus \left(0,\tfrac{1}{2}\right)\right), bzw. \left(1,\tfrac{1}{2}\right) \oplus \left(\tfrac{1}{2},1 \right) Darstellung der Lorentz-Gruppe[2].

Die Feldgleichung kann aus der folgenden Lagrange-Dichte hergeleitet werden[3]:

\mathcal{L}=-\tfrac{i}{2}\;\bar{\psi}_\mu \left ( \epsilon^{\mu \nu \rho \sigma} \gamma_5 \gamma_\nu \partial_\rho + m \sigma^{\mu \sigma} \right)\psi_\sigma

Dabei bezeichnet \bar{\psi}_\mu den adjungierten Spinor zu ψμ. Wie in der Dirac-Gleichung kann die Wechselwirkung mit einem elektromagnetischen Feld durch die minimale, eichinvariante Kopplung:

\partial_\mu \rightarrow D_\mu = \partial_\mu - i e A_\mu

berücksichtigt werden. Die Rarita-Schwinger-Gleichung hat für Teilchen mit Ruhemasse 0 eine Eichsymmetrie bezüglich der Eichtransformation \psi_\mu \rightarrow \psi_\mu + \partial_\mu \epsilon. Dabei ist \mathcal{\epsilon} ein frei wählbares, komplexes Eichfeld.

Von der Rarita-Schwinger-Gleichung existieren auch Weyl- und Majorana-Darstellungen, die sich bezüglich der physikalischen Ergebnisse nicht von der Originalgleichung unterscheiden. Sie wird gewöhnlich dazu benutzt zusammengesetzte Teilchen, wie das Delta (Δ) Baryon zu beschreiben und zu untersuchen. Manchmal wird diese Gleichung auch für hypothetische Teilchenfelder wie das Gravitino verwendet. Zu beachten bleibt, dass bisher noch kein stabiles Elementarteilchen mit Spin 3/2 experimentell nachgewiesen werden konnte.

Artikel

  • W. Rarita and J. Schwinger, On a Theory of Particles with Half-Integral Spin Phys. Rev. 60, 61 (1941).
  • Collins P.D.B., Martin A.D., Squires E.J., Particle physics and cosmology (1989) Wiley, Section 1.6.
  • G. Velo, D. Zwanziger, Propagation and Quantization of Rarita-Schwinger Waves in an External Electromagnetic Potential, Phys. Rev. 186, 1337 (1969).
  • G. Velo, D. Zwanziger, Noncausality and Other Defects of Interaction Lagrangians for Particles with Spin One and Higher, Phys. Rev. 188, 2218 (1969).
  • M. Kobayashi, A. Shamaly, Minimal Electromagnetic coupling for massive spin-two fields, Phys. Rev. D 17,8, 2179 (1978).

Bücher

  • Walter Greiner: Theoretische Physik. Band 6: Relativistische Quantenmechanik. Wellengleichungen. 2. überarbeitete und erweiterte Auflage. Deutsch, Thun u. a. 1987, ISBN 3-8171-1022-7.

Referenzen

  1. S. Weinberg, "The quantum theory of fields", Band 3, Cambridge S. 335
  2. S. Weinberg, "The quantum theory of fields", Band 1, Cambridge S. 232
  3. S. Weinberg, "The quantum theory of fields", Band 3, Cambridge S. 335

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • J. Schwinger — Julian Seymour Schwinger, 1965 Julian Seymour Schwinger (* 12. Februar 1918 in New York; † 16. Juli 1994 in Los Angeles) war einer der führenden US amerikanischen theoretischen Physiker. Zusammen mit Richard P. Feynman und …   Deutsch Wikipedia

  • Julian Schwinger — Julian Seymour Schwinger, 1965 Julian Seymour Schwinger (* 12. Februar 1918 in New York; † 16. Juli 1994 in Los Angeles) war einer der führenden US amerikanischen theoretischen Physiker. Zusammen mit Richard P. Feynman und …   Deutsch Wikipedia

  • Julian Seymour Schwinger — Julian Seymour Schwinger, 1965 Julian Seymour Schwinger (* 12. Februar 1918 in New York; † 16. Juli 1994 in Los Angeles) war einer der führenden US amerikanischen theoretischen Physiker. Zusammen mit Richard P. Feynman und Shinichirō Tomonaga… …   Deutsch Wikipedia

  • Liste von Physikern — Die Liste von Physikern ist alphabetisch sortiert und enthält nur Forscher, die wesentliche Beiträge zum Fachgebiet geleistet haben. Die Liste soll neben den Lebensdaten das Fachgebiet des Forschers nennen und wenige Stichworte zu den Aspekten… …   Deutsch Wikipedia

  • Theoretische Physik — Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn Du Dich mit dem Thema auskennst, bist Du herzlich eingeladen, Dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”