- Repunitzahl
-
Der Begriff Repunit ist ein Kunstwort aus den englischen Wörtern repeated (wiederholt) und unit (Einheit) und bezeichnet eine Zahl, die nur die Ziffer 1 enthält. Der Begriff Repunit wurde 1966 von A.H. Beiler geprägt. Im Deutschen wird auch der Begriff Einserkolonne oder Einserschlange verwendet.
Eine prime Repunit oder Repunit-Primzahl ist eine Repunit, die zugleich eine Primzahl ist.
Inhaltsverzeichnis
Definition
Mathematisch sind Repunits definiert als
Die Zahl Rn besteht also aus n Einsen. Die Folge der Repunits beginnt 1, 11, 111, 1111, ... (Folge A002275 in OEIS).
Repunit-Primzahlen
Die Definition der Repunits entstand historisch auf der Suche nach einer Zerlegung solcher Zahlen in ihre Primfaktoren. Die Frage, ob eine Repunit-Zahl eine Primzahl ist, beschäftigte im 19. Jahrhundert sogar ernsthafte Mathematiker. So verfasste Carl Gustav Jacob Jacobi eine Arbeit mit dem Titel Untersuchung, ob die Zahl 11111111111 eine Primzahl ist oder nicht. Ein Kuriosum, veranlasst durch Dase.
Es ist einfach zu zeigen, dass Rn durch Ra teilbar ist, falls n durch a teilbar ist. Zum Beispiel ist R9 teilbar durch R3: 111111111 = 111 · 1001001. Deshalb muss notwendig n eine Primzahl sein, damit Rn eine Primzahl sein kann. Diese Bedingung ist jedoch nicht hinreichend, zum Beispiel ist R3 keine Primzahl, da R3 = 111 = 3 · 37.
Außer für dieses Beispiel von R3 kann p nur Teiler von Rn sein (für eine Primzahl n), wenn p = 2kn + 1 für ein bestimmtes k.
Repunit-Primzahlen sind selten. Rn ist eine Primzahl für n = 2, 19, 23, 317, 1031, ... (Folge A004023 in OEIS). R49081 und R86453 sind wahrscheinlich Primzahlen. Es wird vermutet, dass es unendlich viele Repunit-Primzahlen gibt[1].
Verallgemeinerte Repunits
Da die obige Definition von Repunits auf dem Dezimalsystem beruht, mag diese Definition zunächst willkürlich erscheinen. Man kann die zugrunde liegende Idee jedoch verallgemeinern, indem man Repunits bezüglich einer beliebigen Basis b definiert:
Die Basis-2-Repunits sind bekannt als die Mersenne-Zahlen Mn = 2n − 1.
Die Repunit-Primzahlen sind eine Teilmenge der permutierbaren Primzahlen, also der Primzahlen, die Primzahlen bleiben, wenn man ihre Ziffern beliebig vertauscht.
Es ist einfach zu beweisen [2], dass für jedes n, das nicht glatt durch 2 oder p teilbar ist, eine Repunit zur Basis 2p existiert, die ein Vielfaches von n ist.
Einzelnachweise
- ↑ http://primes.utm.edu/glossary/page.php?sort=Repunit
- ↑ http://www.caliban.org.uk/pmwiki/pmwiki.php?n=Blogs.RichardRothwell.RepUnits
Weblink
Wikimedia Foundation.