Sigmakörper

Sigmakörper

Eine σ-Algebra (auch σ-Mengenalgebra, Sigmakörper oder Borelscher Mengenkörper) ist ein Grundbegriff der Maßtheorie. Als solcher wird sie auch in der Stochastik häufig verwendet. Eine σ-Algebra ist eine mengentheoretische Struktur, sie bezeichnet ein Mengensystem auf einer festen Grundmenge, das die Grundmenge enthält und abgeschlossen ist bezüglich der Komplementbildung und abzählbaren Vereinigungen.

Inhaltsverzeichnis

Definition

Als σ-Algebra bezeichnet man in der Mathematik ein Mengensystem (in der Stochastik das Ereignissystem) \mathcal A mit \mathcal A \subseteq \mathcal P (\Omega), also eine Menge \mathcal A von Teilmengen der Grundmenge (in der Stochastik: Ergebnismenge) Ω, welche die folgenden Bedingungen erfüllt:

  1. \Omega \in \mathcal A   (Die Grundmenge Ω ist in \mathcal A enthalten.)
  2. A \in \mathcal A \Rightarrow A^{\mathsf c} \in \mathcal A\quad   (Wenn \mathcal A eine Teilmenge A von Ω enthält, dann auch deren Komplement A^{\mathsf c}=\Omega\setminus A.)
  3. A_1,A_2, \ldots \in \mathcal A  \Rightarrow \bigcup_{n\in\mathbb{N}} A_n \in \mathcal A.   (Wenn für jede natürliche Zahl n die Menge An in \mathcal A ist, so ist auch die abzählbare Vereinigung aller An in \mathcal A.)

Erläuterungen

  • Aus den Bedingungen 1 und 2 folgt, dass \mathcal A immer das Komplement von Ω, also die leere Menge enthält. Aufgrund der Eigenschaft 2 kann man in Eigenschaft 1 alternativ zu \Omega \in \mathcal A auch \emptyset \in \mathcal A fordern.
  • Wählt man in Bedingung 3 die Mengen A_m=\emptyset für alle m > n, so folgt, dass die endliche Vereinigungsmenge A_1\cup A_2\cup\cdots\cup A_n in \mathcal A enthalten ist.
  • Ist A_n\in\mathcal A für jede natürliche Zahl n, so folgt aus den De Morganschen Gesetzen und den Bedingungen 2 und 3, dass auch die Schnittmenge in \mathcal A ist, weil
\bigcap_{n\in\mathbb{N}} A_n=\biggl(\bigcup_{n\in\mathbb{N}} A_n^{\mathsf c}\biggr)^{\!\!\mathsf c}.
  • Wählt man Am = Ω für alle m > n, so folgt, dass der Durchschnitt A_1\cap A_2\cap\cdots\cap A_n von endlich vielen Mengen in \mathcal A enthalten ist. Eine σ-Algebra ist also abgeschlossen gegenüber endlichen und abzählbar unendlichen Durchschnitten.
  • Sind A und B aus \mathcal A, so ist auch A\setminus B=A\cap B^{\mathsf c} in \mathcal A. Also ist \mathcal A abgeschlossen gegen Mengendifferenz.
  • Ferner ist jede σ-Algebra insbesondere auch ein Dynkin-System.

Beispiele

  • Für jede beliebige Menge Ω ist \{\emptyset,\Omega\} die kleinste und die Potenzmenge \mathcal P(\Omega) die größte mögliche σ-Algebra.
  • Für jede beliebige Menge Ω und Teilmenge A \subseteq \Omega ist \mathcal A = \{ \emptyset, A, A^{\mathsf c}, \Omega \} die kleinste σ-Algebra, die A enthält.
  • Für jeden topologischen Raum Ω existiert die σ-Algebra der Borelschen Teilmengen von Ω, die unter anderem alle offenen und abgeschlossenen Teilmengen von Ω enthält.
  • Die σ-Algebra der Borelschen Teilmengen der reellen Zahlen enthält unter anderem alle Intervalle.
  • Über einer Grundmenge Ω ist das Mengensystem \mathcal A=\{A\subset\Omega\mid A\ \mathrm{abz\ddot{a}hlbar\ oder}\ A^{\mathsf c}\ \mathrm{abz\ddot{a}hlbar}\} eine σ-Algebra. Ist hierbei Ω überabzählbar, so ist eine Funktion f:\Omega\to\bar\mathbb R_+ genau dann messbar, wenn sie auf dem Komplement einer abzählbaren Menge konstant ist.

Bedeutung

σ-Algebren bilden den Ausgangspunkt für die Definition des Maßraums und des Wahrscheinlichkeitsraums. Das Banach-Tarski-Paradoxon demonstriert, dass auf überabzählbaren Mengen die durch die Potenzmenge gebildete σ-Algebra als Grundlage für die Volumenbestimmung zu groß sein kann und die Betrachtung anderer σ-Algebren mathematisch notwendig ist. In der Theorie der stochastischen Prozesse, insbesondere in der stochastischen Finanzmathematik, wird die bis zu einem Zeitpunkt prinzipiell beobachtbare Information durch eine σ-Algebra beschrieben, was zum Begriff der Filtrierung, also einer zeitlich aufsteigenden Familie von σ-Algebren führt. Filtrierungen sind essentiell für die allgemeine Theorie der stochastischen Integration; Integranden (also finanzmathematische Handelsstrategien) dürfen zu einer Zeit t nur von den Informationen bis (ausschließlich) t abhängen; insbesondere dürfen sie nicht „in die Zukunft schauen“.

σ-Operator

1. Für eine beliebige Teilmenge M der Potenzmenge \mathcal P(\Omega) ist der σ-Operator definiert als

\sigma(M):=\bigcap_{ \mathcal A \in\mathcal F(M)}\!\!\mathcal A,

wobei

\mathcal F(M)=\{\mathcal A \subseteq\mathcal P(\Omega) \mid M\subseteq\mathcal A, \mathcal A\ \sigma\text{-Algebra}\}.

Da die Schnittmenge einer Familie von σ-Algebren (über derselben Grundmenge Ω) wieder eine σ-Algebra ist, ist σ(M) somit die kleinste σ-Algebra, die M umfasst.

Der σ-Operator erfüllt die fundamentalen Eigenschaften eines Hüllenoperators:

σ(M) wird als die von M erzeugte σ-Algebra bezeichnet, M heißt Erzeuger dieser σ-Algebra.

2. Sind f_1, \ldots, f_n Funktionen von Ω in Messräume (\Omega_1, \mathcal A_1), \ldots, (\Omega_n, \mathcal A_n), so ist

\sigma(f_1, \ldots, f_n) = \sigma(\{f_i^{-1}(A) \mid 1 \le i \le n, \, A \in \mathcal A_i\})

die kleinste σ-Algebra über Ω, bezüglich derer die fi messbar sind. Sie wird als die von f_1, \ldots, f_n erzeugte σ-Algebra bezeichnet. Entsprechendes gilt für beliebige Indexmengen I statt \{1, \ldots, n\}.

Spur-σ-Algebra

Für E \subseteq \Omega wird das Mengensystem \mathcal A|E:=\{ A \cap E \,|\, A \in \mathcal A \} als Spur von \mathcal A in E bzw. Spur-σ-Algebra von \mathcal A über E bezeichnet. Man kann zeigen, dass die Spur von \mathcal A in E wieder eine σ-Algebra (aber mit der Grundmenge E) ist, was den Namen "Spur-σ-Algebra" rechtfertigt.

Literatur

  • Heinz Bauer: Maß- und Integrationstheorie. Walter de Gruyter, Berlin–New York 1992. ISBN 3-11-013626-0
  • Jürgen Elstrodt: Maß- und Integrationstheorie. ISBN 3-540-65420-8
  • Ernst Henze: Einführung in die Maßtheorie. ISBN 3-411-03102-6

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую
Synonyme:

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Ereignisalgebra — Eine σ Algebra (auch σ Mengenalgebra, Sigmakörper oder Borelscher Mengenkörper) ist ein Grundbegriff der Maßtheorie. Als solcher wird sie auch in der Stochastik häufig verwendet. Eine σ Algebra ist eine mengentheoretische Struktur, sie bezeichnet …   Deutsch Wikipedia

  • Sigma-Algebra — Eine σ Algebra (auch σ Mengenalgebra, Sigmakörper oder Borelscher Mengenkörper) ist ein Grundbegriff der Maßtheorie. Als solcher wird sie auch in der Stochastik häufig verwendet. Eine σ Algebra ist eine mengentheoretische Struktur, sie bezeichnet …   Deutsch Wikipedia

  • Σ-Algebra — Eine σ Algebra (auch σ Mengenalgebra, Sigmakörper oder Borelscher Mengenkörper) ist ein Grundbegriff der Maßtheorie. Als solcher wird sie auch in der Stochastik häufig verwendet. Eine σ Algebra ist eine mengentheoretische Struktur, sie bezeichnet …   Deutsch Wikipedia

  • σ-Algebra — Eine σ Algebra (auch σ Mengenalgebra, Sigmakörper oder Borelscher Mengenkörper) ist ein Grundbegriff der Maßtheorie. Eine σ Algebra ist eine mengentheoretische Struktur, die ein Mengensystem auf einer festen Grundmenge bezeichnet, das die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”