Bijektive Abbildung

Bijektive Abbildung
Eine bijektive Funktion.

Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion.

Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definitionsbereichs auf verschiedene Elemente der Zielmenge abbildet (sie also injektiv ist), und wenn zusätzlich jedes Element der Zielmenge als Funktionswert auftritt (sie also surjektiv ist). Eine bijektive Funktion hat daher immer eine Umkehrfunktion, ist also invertierbar.

Eine bijektive Funktion nennt man auch eine Bijektion. Eine Bijektion einer endlichen Menge auf sich selbst heißt auch Permutation.

Für endliche Mengen haben die Definitionsmenge, die Bildmenge und die Zielmenge einer Bijektion dieselbe Anzahl von Elementen. Umgekehrt ist eine Funktion zwischen endlichen Mengen bijektiv, wenn diese drei Zahlen übereinstimmen.

Für unendliche Mengen definiert man die Mächtigkeit als Verallgemeinerung der Elementanzahl mit Hilfe des Begriffes der Bijektion.

Inhaltsverzeichnis

Definition

Sei f eine Funktion, die von X nach Y abbildet, also f \colon X \to Y. f ist bijektiv, wenn für alle y \in Y genau ein x \in X mit f\left(x\right) = y existiert.

Mit anderen Worten kann man dies so ausdrücken: f ist bijektiv, wenn f injektiv und surjektiv ist.

Grafische Veranschaulichungen

Das Prinzip der Bijektivität: Jeder Punkt in der Zielmenge (Y) wird genau einmal getroffen.
Vier bijektive streng monoton steigende reelle Funktionen.
Vier bijektive streng monoton fallende reelle Funktionen.

Beispiele und Gegenbeispiele

Die Menge der reellen Zahlen wird hier mit \mathbb{R} bezeichnet, die Menge der nichtnegativen reellen Zahlen mit \R^+_0.

  • Die Funktion f: \R\to\R, x\mapsto x+a ist bijektiv mit der Umkehrfunktion f^{-1}: \R\to\R, x\mapsto x-a.
  • Ebenso ist für a\ne 0 die Funktion g: \R\to\R, x\mapsto ax bijektiv mit der Umkehrfunktion g^{-1}: \R\to\R, x\mapsto \frac{x}{a}.
  • Unmathematisches Beispiel: Ordnet man jedem (monogam) verheirateten Menschen seinen Ehepartner bzw. seine Ehepartnerin zu, ist dies eine Bijektion der Menge aller verheirateten Menschen auf sich selbst. Dies ist sogar ein Beispiel für eine selbstinverse Abbildung.
  • Die folgenden vier Quadratfunktionen unterscheiden sich nur in ihren Definitions- bzw. Wertemengen:
f_1\ :\mathbb{R}\ \ \rightarrow\mathbb{R}\ , \ \ x \mapsto x^2
f_2\ : \R^+_0\rightarrow\mathbb{R}\ , \ \ x \mapsto x^2
f_3\ : \mathbb{R}\ \ \rightarrow \R^+_0,\ x \mapsto x^2
f_4\ : \R^+_0\rightarrow \R^+_0,\ x \mapsto x^2
Mit diesen Definitionen ist
f1 nicht injektiv, nicht surjektiv, nicht bijektiv
f2 injektiv, nicht surjektiv, nicht bijektiv
f3 nicht injektiv, surjektiv, nicht bijektiv
f4 injektiv, surjektiv, bijektiv

Eigenschaften

  • Sind A und B endliche Mengen mit gleich vielen Elementen und ist f : A \to B eine Funktion, dann gilt:
    Ist f injektiv, dann ist f bereits bijektiv.
    Ist f surjektiv, dann ist f bereits bijektiv.
  • Insbesondere gilt also für Funktionen f : A \to A von einer endlichen Menge A in sich selbst:
    f ist injektiv ⇔ f ist surjektiv ⇔ f ist bijektiv.
    Für unendliche Mengen ist das im Allgemeinen falsch. Diese können injektiv auf echte Teilmengen abgebildet werden, ebenso gibt es surjektive Abbildungen einer unendlichen Menge auf sich selbst, die keine Bijektionen sind.
    Solche Überraschungen werden im Artikel Hilberts Hotel detaillierter beschrieben, siehe dazu auch Dedekind-Unendlichkeit.
  • Sind die Funktionen f : A \to B und g : B \to C bijektiv, dann gilt dies auch für die Verkettung g\circ f : A \to C. Die Umkehrfunktion von g\circ f ist dann f^{-1}\circ g^{-1}.
  • Ist g\circ f bijektiv, dann ist f injektiv und g surjektiv.
  • Ist f : A \to B eine Funktion und gibt es eine Funktion g : B \to A, die die beiden Gleichungen
    g \circ f = \operatorname{id}_A (\operatorname{id}_A = Identität auf der Menge A)
    f \circ g = \operatorname{id}_B (\operatorname{id}_B = Identität auf der Menge B)
    erfüllt, dann ist f bijektiv, und g ist die Umkehrfunktion von f, also g = f − 1.
  • Die Bijektionen einer Menge A in sich selbst bilden, zusammen mit der Verkettung als Verknüpfung, eine Gruppe, die, falls A endlich ist, symmetrische Gruppe heißt.

Siehe auch

Literatur

Gerd Fischer: Lineare Algebra. Vieweg-Verlag, ISBN 3-528-03217-0.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Bijektive Funktion — Eine bijektive Funktion. Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion; eine bijektive Funktion nennt man auch Bijektion. Eine Funktion ist bijektiv, wenn sie sowohl… …   Deutsch Wikipedia

  • Abbildung (Mathematik) — In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable, x Wert) ein Element der anderen Menge (Ausgangsgröße, Funktionswert …   Deutsch Wikipedia

  • Kollineare Abbildung — Eine kollineare Abbildung (oder: Projektive Abbildung, Projektive Transformation), auch Kollineation, ist eine bijektive Abbildung zwischen projektiven Ebenen bzw. Räumen, die alle Geraden wieder auf Geraden abbildet. Dabei werden Vierecke,… …   Deutsch Wikipedia

  • Biholomorphe Abbildung — In der Funktionentheorie ist eine biholomorphe oder schlichte Abbildung eine bijektive holomorphe Abbildung mit holomorpher Umkehrabbildung. Inhaltsverzeichnis 1 Eigenschaften 2 Eindimensionale Beispiele 2.1 Die lineare Funkti …   Deutsch Wikipedia

  • Schlichte Abbildung — In der Funktionentheorie ist eine biholomorphe Abbildung eine bijektive holomorphe Abbildung mit holomorpher Umkehrabbildung. Inhaltsverzeichnis 1 Eigenschaften 2 Eindimensionale Beispiele 2.1 Die lineare Funktion 2.2 Inversion …   Deutsch Wikipedia

  • Lineare Abbildung — Achsenspiegelung als Beispiel einer linearen Abbildung Die lineare Abbildung (auch linearer Operator oder Vektorraumhomomorphismus) ist ein Begriff aus dem mathematischen Teilgebiet der Linearen Algebra. Man bezeichnet damit eine Abbildung… …   Deutsch Wikipedia

  • Affine Abbildung — In der Geometrie und in der Linearen Algebra, Teilgebieten der Mathematik, ist eine affine Abbildung (auch affine Transformation genannt, insbesondere bei einer bijektiven Abbildung) eine Abbildung zwischen zwei affinen Räumen, bei der… …   Deutsch Wikipedia

  • Unitäre Abbildung — Als unitäre Abbildung (auch unitäre Transformation) bezeichnet man in der Mathematik eine bijektive lineare Abbildung, die längen und winkelerhaltend ist. Beispiele hierfür sind Drehungen und Spiegelungen. Mathematisch bedeutet dies, dass eine… …   Deutsch Wikipedia

  • Inverse Abbildung — Die Umkehrfunktion oder inverse Funktion einer bijektiven Funktion ist die Funktion, die jedem Element der Zielmenge sein eindeutig bestimmtes Urbildelement zuweist. (Bei bijektiven Funktionen hat die Urbildmenge jedes Elements genau ein… …   Deutsch Wikipedia

  • Glossar mathematischer Attribute — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik zur Löschung vorgeschlagen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”