Eager learning

Eager learning

Eager learning (engl., „Eifriges Lernen“) ist eine Klasse von maschinellen Lernverfahren. Im Gegensatz zum lazy learning findet dabei die Modellbildung offline einmalig auf Basis der Trainingsdaten statt, und nicht online zur Zeit der Anfrage. Der Vorteil ist, dass dadurch zwar die Zeit des Trainierens durch die Modellbildung verlängert wird, aber die Abfragezeit deutlich verkürzt wird.[1]

Im Gegensatz zum lazy learning kann dabei allerdings die Modellbildung stets nur global über den kompletten Trainingsdatensatz erfolgen, nicht lokal um den Arbeitspunkt, da dieser zum Zeitpunkt des Trainierens/Lernens nicht bekannt ist.

Literatur

  • David W. Aha: Lazy learning. Kluwer Academic Publishers, Norwell 1997, ISBN 0-7923-4584-3.
  • Peter Auer: On Learning From Multi-Instance Examples. Empirical Evaluation of a Theoretical Approach. In: ICML '97: Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco 1997, ISBN 1-55860-486-3, S. 21-29.

Einzelnachweise

  1. David W. Aha: Lazy learning. Kluwer Academic Publishers, Norwell 1997, ISBN 0-7923-4584-3.

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Eager learning — In artificial intelligence, eager learning is a learning method in which the system tries to construct a general, input independent target function during training of the system, as opposed to lazy learning, where generalization beyond the… …   Wikipedia

  • learning organisation — / lɜ:nɪŋ ɔ:gənaɪˌzeɪʃ(ə)n/ noun an organisation whose employees are willing and eager to share information with each other, to learn from each other, and to work as a team to achieve their goals …   Marketing dictionary in english

  • Lazy learning — In artificial intelligence, lazy learning is a learning method in which generalization beyond the training data is delayed until a query is made to the system, as opposed to in eager learning, where the system tries to generalize the training… …   Wikipedia

  • Lazy learning — (engl., „Träges Lernen“) ist eine Klasse von maschinellen Lernverfahren. Im Gegensatz zum eager learning findet dabei die Modellbildung nicht während oder nach dem Trainieren statt, sondern erst zur Zeit der Anfrage.[1] Der Vorteil ist dabei,… …   Deutsch Wikipedia

  • Offline learning — In machine learning, systems which employ offline learning do not change their approximation of the target function once the initial training phase has been absolved. These systems are also typically examples of eager learning. See also online… …   Wikipedia

  • History of virtual learning environments 1990s — In the history of virtual learning environments, the 1990s was a time of growth, primarily due to advent of the affordable computer and of the Internet.1990s1990* Formal Systems Inc. of Princeton, NJ, USA introduces a DOS based Assessment… …   Wikipedia

  • Children's Learning Institute — The Children’s Learning Institute at The University of Texas Health Science Center at Houston (UTHealth) is a nationally recognized institute that combines scholarship from the fields of education, psychology, neurodevelopment and medicine to… …   Wikipedia

  • Garden-based learning — (GBL) encompasses programs, activities and projects in which the garden is the foundation for integrated learning, in and across disciplines, through active, engaging real world experiences that have personal meaning for children, youth, adults… …   Wikipedia

  • Europe, history of — Introduction       history of European peoples and cultures from prehistoric times to the present. Europe is a more ambiguous term than most geographic expressions. Its etymology is doubtful, as is the physical extent of the area it designates.… …   Universalium

  • India — /in dee euh/, n. 1. Hindi, Bharat. a republic in S Asia: a union comprising 25 states and 7 union territories; formerly a British colony; gained independence Aug. 15, 1947; became a republic within the Commonwealth of Nations Jan. 26, 1950.… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”