MAGIDOR, MENACHEM — (1946– ), president of the Hebrew University of Jerusalem. Magidor was born in Petah Tikvah, Israel. He received his academic education at the Hebrew University of Jerusalem, getting his B.Sc. in mathematics and physics in 1965, a M.Sc. in… … Encyclopedia of Judaism
Menachem Magidor — Professor Menachem Magidor in Jerusalem, December 2006 Born January 24, 1946 … Wikipedia
Menachem Magidor — (hebräisch מנחם מגידור; * 24. Januar 1946 in Petah Tikva, Israel) ist ein israelischer mathematischer Logiker, der sich insbesondere mit axiomatischer Mengenlehre und Logik beschäftigt. Menachem Magidor im Dezember 2006 … Deutsch Wikipedia
List of forcing notions — In mathematics, forcing is a method of constructing new models M[G] of set theory by adding a generic subset G of a poset P to a model M. The poset P used will determine what statements hold in the new universe (the extension ); to force a… … Wikipedia
Matthew Foreman — Matthew Dean Foreman (born March 21, 1957) is a set theorist at University of California, Irvine. He has made contributions in widely varying areas of set theory, including descriptive set theory, forcing, and infinitary combinatorics. Foreman… … Wikipedia
Löwenheim number — In mathematical logic the Löwenheim number of an abstract logic is the smallest cardinal number for which a weak downward Löwenheim–Skolem theorem holds.[1] They are named after Leopold Löwenheim, who proved that these exist for a very broad… … Wikipedia
Martin's maximum — In set theory, Martin s maximum, introduced by Foreman, Magidor Shelah (1988), is a generalization of the proper forcing axiom, which is in turn a generalization of Martin s axiom. Martin s maximum (MM) states that if D is a collection of dense… … Wikipedia
W. Hugh Woodin — De gauche à droite : les logiciens Sy Friedman (en), Hugh Woodin, et Menachem Magidor … Wikipédia en Français
Jensen's covering theorem — In set theory, Jensen s covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close … Wikipedia
Grand cardinal — En mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l axiomatique usuelle (ZFC) tels que aleph zéro,… … Wikipédia en Français