- Chemiegeschichte
-
Die Geschichte der Chemie ist seit ältesten Zeiten eng mit handwerklichen Tätigkeiten verbunden. Zu Beginn der Neuzeit entwickelte sie sich aus der Verbindung der antiken chemischen Praxis mit der, über arabische Gelehrte nach Europa vermittelten, mittelalterlichen Alchemie. Neben den praktischen Aspekten bemüht sich die Chemie seit ihren Anfängen, gemeinsam mit ihrer Schwesterwissenschaft, der Physik, das innere Wesen der Materie aufzuklären.
Ab etwa dem 18. Jahrhundert entwickelte sich die Chemie zu einer exakten Naturwissenschaft, die dann ab dem 19. Jahrhundert begann, eine enorme Fülle von praktisch verwertbaren Ergebnissen zu liefern, die zur Errichtung einer gewaltigen chemischen Industrie führte.
Die industrielle Anwendung der Chemie führte als Nebenprodukt aber auch zu immer größeren Umweltschäden, die etwa ab 1970 zum Entstehen einer Umweltbewegung führte, damit die chemische Industrie wie auch die Gesellschaft insgesamt zu nachhaltigem Handeln ohne Umweltverschmutzung bewegt wird.
Heute ist die Chemie eine sehr differenzierte Wissenschaft, die in ihren zahlreichen Sparten unterschiedlichste Forschungsziele hat und eine Vielzahl von Technologien zur Umwandlung von Stoffen (chemische Reaktionen) jeder Art nutzt.
Die Wurzeln der Chemie
Hauptartikel: Chemie in der Antike und Chemie im Mittelalter
Metallurgie, das Erschmelzen von Metallen wie Kupfer oder Eisen aus Erzen, Färberei, Bierbrauen und die Herstellung von Arzneien oder Pfeilgiften müssen bereits als Vorformen chemischen Handelns begriffen werden . Die Chemie in der Antike unterschied sich von heutigen Herstellungsverfahren der technischen Chemie nur dadurch, dass sie auf reiner Erfahrung beruhten ohne soliden theoretischen Unterbau.
Theorien entwickelte eine zweite Wurzel, die Alchemie, die auf im mittleren und fernen Osten praktizierten Methoden beruht und die von den arabischen Gelehrten mit den Ansichten der griechischen Antike vereint wurden. Die Theorien der Alchemisten ergaben sich in der Chemie im Mittelalter nicht nur aus ihren experimentellen Erfahrungen, sondern auch aus Lehren der Astrologie und einem Weltverständnis, das man heute als esoterisch bezeichnen würde, tatsächlich aber der frühe Versuch einer phänomenologischen Theorie im Rahmen der damaligen Axiomatik war.
Ab dem 12. Jahrhundert brach - dank der Kontakte zu den arabischen Alchimisten - der „Alchimieboom“ über Europa herein: 1085 schrieb Gerhard von Cremona in Toledo das erste Chemiebuch Europas: „Das Buch der Alaune und Salze“, 1193-1280 forschte Albertus Magnus in Köln, und selbst der Kirchengelehrte Thomas von Aquin betrieb unter dem Rückgriff auf Aristoteles und die Bibel „studiae alchymicae“.
Roger Bacon (1210-1292) führte das Experiment als wichtigste Arbeitsmethode der Alchimisten ein („Sine experimentil nihil sufficienter sciri potest“: Ohne Experimente kann nichts ausreichend gewusst werden), - die Waage jedoch blieb ein Gerät zur Abmessung der Ausgangssubstanzen. Erst bei Lavoisier - ab 1775 - wurde sie zum Mittel der messenden Erforschung.
Albertus Magnus war dennoch ein bedeutender Alchimist und Chemiker des Mittelalters, der sich als Dominikanermönch mit seinen Theorien jedoch streng innerhalb der von der Kirche vorgegeben Grenzen bewegte. Er isolierte als erster das Element Arsen.
Eine wesentliche Zielsetzung der Alchemie war das Auffinden des Steines der Weisen und des Lebenselixiers. Die Triebfeder dafür war der Glaube, dass man damit Blei in Gold verwandeln bzw. den Tod überwinden könne. Doch auch diese vorwissenschaftliche Methode trachtete danach, wie die Chemie heute, bestimmte Aspekte der Welt zu erklären.
Spektakuläre chemische Vorgänge bei denen es knallt, zischt, schäumt, farbige Flammen entstehen, Flüssigkeiten ihre Farbe ändern usw. wurden als Auswuchs der Alchemie im 18. Jahrhundert gerne von "Quacksalbern" und Hochstaplern dazu verwendet, ihre Opfer zu beeindrucken. Mit dem Versprechen, Gold zu machen, verbunden mit spektakulären Chemie-Shows, konnte beispielsweise Giacomo Casanova adeligen Damen viel Geld und Edelsteine aus der Tasche locken.
Dennoch gab es in frühester Neuzeit auch wichtige Entdeckungen: 1669 entdeckte Hennig Brand, ein deutscher Apotheker und Alchemist, auf der Suche nach dem Stein der Weisen (als er Urin destillierte und den Rückstand glühte) jedoch das chemische Element Phosphor; und auf der Suche nach dem "Stein der Weisen" erfand der Alchemist und Chemiker Johann Friedrich Böttger zusammen mit Ehrenfried Walther von Tschirnhaus 1708 sogar das europäische Pendant des chinesischen Porzellans, doch der „Stein der Weisen“ blieb Phantasie.
Die Anfänge einer systematischen praktischen Chemie
Metallurgie
Im 16. Jahrhundert schrieb der sächsische Gelehrte Georgius Agricola sein zwölfbändiges Werk über Metallurgie, die res metallica, deren Band sieben für lange Zeit ein Standardwerk für die frühe Analytische Chemie, das heißt für Nachweisreaktionen und zum Prüfen von Metallen, wurde. Sie stellt die erste umfassende, systematische Zusammenstellung des metallurgischen Wissens der frühen Neuzeit dar.
Arzneiherstellung
Neben der Metallurgie war im 16. Jahrhundert die Pharmazie in der praktischen Chemie von besonderer Bedeutung. Der deutsche Arzt und Naturwissenschaftler Paracelsus begründete die chemische Forschung zur Bekämpfung von Krankheiten (Iatrochemie). Seiner Überzeugung nach, kommen Krankheiten von außen und können daher mit chemischen Stoffen von außen behandelt werden.
Im Laufe der Zeit wurden besonders im Bereich der Arzneiherstellung viele der Apparate und Verfahren entwickelt, die man teilweise bis heute in chemischen Laboratorien nutzt: Mörser zum Zerkleinern, Glaskolben, Retorten, Spatel, genaue Waagen, Destillationsapparate usw.
Der Beginn des messenden Forschens und frühe Theorien
Hauptartikel: Chemie in der Neuzeit
Von Stahl bis Lavoisier
Eine der ersten Theorien, die im Bereich der Chemie aufgestellt wurde, ist die Phlogistontheorie der Verbrennung. Als ihr Vater kann der Chemiker Georg Ernst Stahl zu Beginn des 18. Jahrhunderts gelten. Sie musste aufgegeben werden, als Antoine Laurent de Lavoisier mit seiner Frau Marie gegen Ende des 18. Jahrhunderts durch genaue Verfolgung von Verbrennungsprozessen durch Wägungen nachwies, dass die Theorie nicht stimmt. Er schuf statt dessen die Theorie der Oxidation und die Grundlage zur weiteren Entdeckung der Grundgesetze der Chemie.
Zu dieser Zeit führten die quantitave Verfolgung von Reaktionen so auch zum Gesetz der konstanten Proportionen (Joseph-Louis Proust, 1794) und die Tätigkeit des schwedischen Chemikers Jöns Jakob Berzelius zur Entwicklung einer international verständlichen Symbolschreibweise für chemische Verbindungen (Summenformeln und Strukturformeln) und der Erfindung des Reagenzglases.
Von Dalton bis Mendelejew
Der englische Naturforscher John Dalton legte 1808 mit seinem Buch A new System of Chemical Philosophy den Grund für eine moderne Atomtheorie, die die damals neuesten quantitativen Befunde berücksichtigte.
1869 zeigten der russische Chemiker Dmitri Mendelejew und der deutsche Arzt und Chemiker Lothar Meyer, dass sich die Eigenschaften von Elementen periodisch wiederholen, wenn man sie nach steigender Atommasse anordnet - Periodensystem. Mit ihrer Theorie konnte sie die Eigenschaften noch unbekannter Elemente korrekt vorhersagen.
Wöhler und die organische Chemie
Ursprünglich unterschied man zwei Arten von Chemie, die man für grundsätzlich verschieden hielt: Da war zum Einen die anorganische Chemie, die sich mit chemischen Prozessen in der nicht lebenden Welt, also vor allem mit den Reaktionen von Mineralien und den daraus hergestellten Stoffen befasste. Im Gegensatz dazu stand die organische Chemie, die sich auf chemische Reaktionen in Lebewesen bezog (in Organismen). Man nahm an, dass zur Erzeugung von organischen Stoffen eine besondere Lebenskraft nötig sei. Diese Ansicht wurde durch ein Experiment von Friedrich Wöhler im Jahr 1828 widerlegt. Er stellte den bisher nur als Stoffwechselprodukt von Tieren bekannten Harnstoff aus dem anorganischen Stoff Ammoniumcyanat her. Seither ist klar: Es gibt keinen grundsätzlichen Unterschied zwischen der Chemie in Lebewesen und der Chemie in der nicht lebenden Welt.
Liebig und die Agrarchemie
Justus von Liebig, Professor für Chemie in Gießen und in München, war ein großer Praktiker. Unter anderem führte er die experimentelle Arbeit im Labor als verpflichtende Lehrveranstaltung für Chemiestudenten ein. Er gilt als Pionier der Agrarchemie und propagierte die Verwendung von Dünger, auch von mineralischem, künstlich hergestelltem Dünger in gezielter, bedarfsgerechter Form und Menge, um nachhaltig hohe landwirtschaftliche Erträge zu erreichen. Er erklärte seine Gedanken und deren Umsetzung nicht nur in wissenschaftlichen Journalen, sondern auch allgemein verständlich in "Liebigs Briefen zur Chemie".
Die chemische Industrie bis zum 1. Weltkrieg
Farbenchemie
Mit der Synthese von Alizarin 1869, dem bis dahin aus großflächig angebautem Färberkrapp gewonnenen roten Farbstoff, durch Carl Graebe und Carl Liebermann begann der Siegeszug synthetischer Farbstoffe und der Niedergang des Anbaus von Pflanzen zur Farbstoffgewinnung. Rotes Fuchsin, erstmals synthetisiert 1858, bildete die wirtschaftliche Basis für die späteren Farbwerke Hoechst AG. Als weiterer wichtiger synthetischer Farbstoff folgte unter anderem Indigo, synthetisiert 1878 von Adolf von Baeyer.
Bis zum ersten Weltkrieg war Deutschland führend in der Farbstoffchemie. Es verlor seine Vormachtstellung, da sich die Siegermächte, vor allem Frankreich, die bis dahin geheim gehaltenen Details der Herstellungsverfahren aneigneten und durch Handelsrestriktionen aufgrund des Friedensvertrages von Versailles.
In dieser Zeit war die Arzneimittelentwicklung eng mit den Farbstoffwerken verbunden und in Deutschland sehr erfolgreich. Ein Verkaufsschlager über viele Jahre war das von der Firma Hoechst seit 1910 vertriebene Salvarsan®, entwickelt von Paul Ehrlich und Sahachiro Hata.
Elektrochemie
Mit der revolutionären Idee, chemische Elemente lägen in Lösung in Form von elektrisch geladenen Ionen vor, legte der englische Physiker und Chemiker Michael Faraday die Grundlage für die Elektrochemie und formulierte 1832 seine Theorie der Elektrolyse in seinen Faradayschen Gesetzen.
In der zweiten Hälfte des 19. Jahrhunderts wurden an vielen Stellen, wo Elektrizität durch billige Wasserkraft reichlich zur Verfügung stand, elektrochemische Werke errichtet. Ein Beispiel dafür ist die Wacker-Chemie im bayerischen Burghausen. Damit wurde die großtechnische Herstellung von Aluminium, Magnesium, Natrium, Kalium, Silicium, Chlor, Kalziumkarbid usw. ermöglicht, was zu weiteren Impulsen zur Errichtung von großen Chemiewerken führte (vgl. unter Chemie in der Neuzeit).
Sprengstoffe und Düngemittel
Die großtechnische Einführung des Haber-Bosch-Verfahrens zur katalytischen Gewinnung von Ammoniak aus Luftstickstoff im Jahre 1910 sowie anderer Redoxreaktionen hatte nicht nur eine große wissenschaftliche sowie wirtschaftliche, sondern auch eine enorme strategische Bedeutung. Damit war die Herstellung der für die Produktion von Sprengstoffen, Düngemitteln und Farbstoffen unerlässlichen Salpetersäure in Deutschland möglich, ohne auf Salpeterimporte aus Übersee angewiesen zu sein.
Die Modifizierung von Naturstoffen
Etwa seit Mitte des 19. Jahrhunderts hatten Chemiker begonnen, Naturstoffe durch chemische Prozesse abzuwandeln, um so kostengünstige Werkstoffe als Ersatz für teure zu gewinnen. Vor allem wird Zellulose modifiziert: Es entsteht zunächst Nitrozellulose, die in Form von Zelluloid Fischbein von Bartenwalen ersetzt und als Zellseide eine billige, wenn auch extrem feuergefährliche Alternative zu Naturseide bietet. Weitere Entwicklungen führen zu weniger gefährlichen Zelluloseprodukten, z.B. Viskose. 1897 wird aus Milcheiweiß als Ersatz für Horn der Stoff Galalith erzeugt.
Viele dieser Entwicklungen jener Zeit fanden in Deutschland statt.
Chemische Industrie seit dem 1. Weltkrieg
Nach dem Ersten Weltkrieg verlagerte sich der Schwerpunkt der industriellen chemischen Entwicklung aus Deutschland mehr nach Frankreich und in die USA.
Polymerchemie
Ein Pionier der Polymerchemie, von damaligen Chemikern oft geringschätzig als "Schmierenchemie" bezeichnet, ist Hermann Staudinger, der die theoretische Grundlage für diesen Zweig legte. In den Dreißigerjahren des 20. Jahrhunderts wurden die ersten vollsynthetischen Kunststoffe entwickelt und in die industrielle Produktion gebracht: PVC, Polyvinylacetat, Nylon, Perlon und dazu kautschukartige Massen (Buna).
Den ganz großen Aufschwung erlebte die Herstellung und Verwendung von Polymeren (Kunststoffen) bald nach dem 2. Weltkrieg, als im Laufe der Jahre eine unübersehbare Vielfalt von Kunststoffen mit unterschiedlichsten Eigenschaften und für die unterschiedlichsten Anwendungen geschaffen wurden.
Synthetischer Treibstoff
Besonders das aufrüstende nationalsozialistische Deutschland hatte großes Interesse an synthetischem Motortreibstoff für seine Armee. Da Deutschland nur geringe Erdölvorkommen aufzuweisen hatte, hingegen riesige Mengen Kohle, wurde die Erzeugung von Motortreibstoff aus Steinkohle vorangetrieben. Das Ergebnis ist die Fischer-Tropsch-Synthese. Damit erlangt die Chemie am Vorabend eines weiteren Krieges wieder strategische Bedeutung, was auch auf den synthetischen Kautschuk zutrifft, der zunächst vor allem für Reifen von Militärfahrzeugen gebraucht wird.
Insektizide und Bakterizide
Ganz besondere Bedeutung nimmt der Kampf gegen krankheitsverursachende Mikroben und gegen Schädlinge an, da er sowohl die Landwirtschaft als auch die Medizin tiefgreifend und nachhaltig beeinflusst. Gerade auf diesem Gebiet betreibt die chemische Industrie einen enormen Aufwand in der Entwicklung, fährt aber auch die höchsten Gewinne ein.
Mit der Entwicklung und Produktion von DDT Dichlordiphenyltrichlorethan ab Anfang der 40-er Jahre träumte man von einer völligen Beseitigung der Malaria durch totale Ausrottung der sie übertragenden Mücken. Im Laufe der folgenden 20 bis 30 Jahre werden immer neue, noch speziellere Insektizide entwickelt und auf den Markt gebracht. Ab etwa 1970 kommt die Ernüchterung: Die Schädlinge entwickeln Resistenzen, die schwer abbaubaren Insektengifte reichern sich in der Nahrungskette an und bringen die Lebewesen am Ende der Kette wie Greifvögel in die Gefahr der Ausrottung. Neben der Umweltverschmutzung durch Chemiewerke sind die Nebenwirkungen der Insektizide und anderer Landwirtschaftschemikalien ein wesentlicher Grund für das Erstarken einer gegen die Anwendung von synthetischen Chemikalien gerichteten Umweltbewegung und ein DDT-Gesetz, was Anwendung, Produktion und das Inverkehrbringen des DDT verbietet.
Mit den Sulfonamiden kommt aus den Laboratorien der Arzneimittelentwickler eine Gruppe von potenten Medikamenten gegen Bakterieninfektionen verschiedener Art. Der erste Vertreter dieser Gruppe war 1935 Prontosil, das ursprünglich als Textilfärbemittel verwendet wurde. Auch hier wird den Mitteln aus der Retorte mehr zugetraut, als sie schließlich halten können. Es sind zwar wirksame Medikamente, aber alles können auch sie nicht leisten, vor allem gegen Vireninfektionen sind sie wirkungslos.
Die Entwicklung chemischer Theorien
Das Massenwirkungsgesetz
Das Massenwirkungsgesetz, von Cato Maximilian Guldberg und Peter Waage im Jahr 1864 formuliert, beschreibt das Verhältnis von Ausgangsstoffen und von Produkten im chemischen Gleichgewicht. Die Anwendung dieser Gesetzmäßigkeit ermöglichte in vielen technisch genutzten Reaktionen eine bessere Ausnutzung des kostspieligeren Ausgangsstoffes durch Einsatz eines Überschusses des billigeren Ausgangsstoffes.
Chemische Kinetik
In der Kinetik werden die Gesetzmäßigkeiten behandelt, die sich mit der Geschwindigkeit von Reaktionen befassen. Dazu gehört auch das Studium der Wirkung von Katalysatoren, wofür, neben seinen Arbeiten zur Kinetik, Wilhelm Ostwald 1909 den Nobelpreis erhielt.
Bindungstheorien
Walter Kossel (1915) und Gilbert Newton Lewis (1916) formulierten ihre Oktettregel, wonach Atome anstreben, acht Außenelektronen zu erlangen. Bindungen zwischen Ionen wurden auf elektrostatische Anziehung zurückgeführt, Atommodelle flossen in Form von theoretischen Berechnungen von Bindungskräften usw. in die Bindungstheorien ein.
Atommodelle
Eng mit der Chemie verbunden ist die Entwicklung von Atommodellen, welches Sachgebiet streng genommen zur Physik zu rechnen ist. Neue Atommodelle haben jedoch stets der theoretischen Chemie neue Impulse gegeben.
So entwickelte sich aus der Quantenphysik eine eigene chemische Disziplin, die Quantenchemie, die 1927 mit Berechnungen am Wasserstoffatom durch Walter Heitler und Fritz London ihre ersten Schritte unternahm.
Heute sind die Modelle mathematisch so weit entwickelt, dass durch sehr komplexe Berechnungen am Computer die Eigenschaften von Verbindungen über die Verteilung der Elektronendichte sehr genau vorausgesagt werden können.
Die Entwicklung der Analysentechnik
Neue Erkenntnisse und neue Verfahren in der Chemie hängen stets mit Verbesserungen der Analysetechnik zusammen. Darüber hinaus werden chemische Analyseverfahren - nasschemische Nachweisreaktionen sowie später die instrumentelle Analytik - etwa seit Mitte des 19. Jahrhunderts mehr und mehr in anderen Disziplinen von Wissenschaft und Technik eingesetzt. Zu Beginn des 21. Jahrhunderts wird chemische Analysentechnik routinemäßig zur Qualitätssicherung in zahlreichen Produktionsverfahren, auch solchen die nicht chemischer Natur sind, eingesetzt. Außerdem spielt die Bestimmung der chemischen Zusammensetzung in Wissenschaften wie Geologie, Archäologie, Medizin, Biologie und vielen anderen eine bedeutende Rolle zum Erkenntnisgewinn.
Im Bereich der Verbrechensaufklärung begannen chemische Analysen in der ersten Hälfte des 19. Jahrhunderts zum Nachweis von Vergiftungen eine Rolle zu spielen. Als Pionierleistung ist diesbezüglich die Marsh'sche Probe als Nachweisreaktion für Arsen zu nennen.
Qualitative Analyse
Die qualitative Analyse soll die Frage beantworten: Was ist drin?. Solche Fragestellungen gibt es vor allem in der Erzverhüttung seit Anbeginn, und dort finden sich auch schon sehr früh Anfänge einer Analysentechnik unter der Bezeichnung "Probierkunst".
Lötrohranalysen
Das Lötrohr wurde seit dem 17. Jahrhundert zunehmend präziser verwendet, um mittels Flammenfärbung und Niederschlägen auf Holzkohle Mineralien zu identifizieren und ihren Metallgehalt abzuschätzen. Hochburg dieser der Metallurgie zuzuordnenden Analysentechnik war Freiberg (Sachsen) mit seinem reichen Erzbergbau.
Nasschemische Verfahren
Intensiv in Gang kamen nasschemische Verfahren im Laufe des 19. Jahrhunderts. Dabei werden im Bereich der anorganischen Analyse die in der Probe enthaltenen Elemente durch systematisches Fällen im Kationentrenngang und durch geeignete Farbreaktionen nachgewiesen. Entsprechende Verfahren wurden für Anionen entwickelt.
Die qualitative Analyse von organischen Substanzen erforderte im Bereich der Farbreaktionen besonders viel Erfahrung, da viele Substanzen ähnliche Farbreaktionen ergaben. Die Verfahren konnten durch die Weiterentwicklung der Laborgeräte und durch immer reinere Reagenzien immer empfindlicher gemacht werden, sodass sowohl die Größe der notwendigen Probenmengen immer kleiner wurde, als auch die nachweisbare Konzentration weiter und weiter sank.
Physikalische Verfahren
Schon in den Anfängen der Probierkunst wurden physikalische Verfahren (Flammenfärbung) zur Identifizierung von Elementen eingesetzt. Mit dem Ausbau spektroskopischer Methoden im Bereich der ultravioletten, der sichtbaren, der infraroten und der Röntgenstrahlung wurde die Identifizierung von Substanzen immer sicherer, exakter und auch schneller. Hier lassen sich qualitative und quantitative Bestimmungen sehr gut miteinander kombinieren, ebenso wie bei chromatographischen Verfahren.
Quantitative Analyse
Erst durch den Einsatz präziser Messinstrumente ( vor allem Waagen) und quantitativer analytischer Methoden konnte sich seit dem 17. und 18. Jahrhundert aus der Alchemie die Chemie als Naturwissenschaft entwickeln. Fortschritte in der Genauigkeit und Empfindlichkeit von quantitativen Analysen mit dem Ziel genauester Gehaltsangaben sind daher stets mit einer Weiterentwicklung von Geräten zur Messung von Masse und Volumen verbunden. Dies führte oft zu Entdeckungen neuer chemischer Elementen, Verbindungen und Reaktionen.
Gravimetrie
Die Gravimetrie, also die Mengenbestimmung mit einer empfindlichen Waage, kann wohl als die Analysenmethode des 19. Jahrhunderts angesprochen werden. Dabei wurde nach zuverlässigen Reaktionen gesucht, in denen die Menge der Produkte nicht nur theoretisch sondern auch praktisch in einem eindeutigen Verhältnis zum zu bestimmenden Ausgangsstoff steht. Ein klassisches Beispiel für dieses Verfahren ist die Bestimmung des Chloridgehaltes durch Fällen mit Silbernitrat und Wiegen des getrockneten Niederschlages von Silberchlorid. Auch bei der Elementaranalyse spielt Gravimetrie eine wichtige Rolle, z. B. mit Hilfe des von Liebig entwickelten Fünf-Kugel-Apparates.
Gravimetrische Verfahren sind umständlich und langsam, wenn auch sehr genau. Das nach der Fällungsreaktion notwendige Filtrieren, Auswaschen und Trocknen dauerte, je nach Substanz, Stunden bis Tage. Daher suchte man nach schnelleren Verfahren, die besonders in der Qualitätskontrolle einer industriellen Chemieproduktion sehr gesucht sind.
Mit der Elektrogravimetrie wurde das Verfahren der Elektrolyse ab etwa dem Beginn des 20. Jahrhunderts als Verfahren zur sauberen Abtrennung von Metallen aus den Lösungen ihrer Ionen, die anschließend gewogen wurden eingeführt.
Volumetrie
Die Gravimetrie erlaubte sehr genaue Analyseresultate, war jedoch in der Durchführung zeitraubend und aufwendig. Im Zuge der aufblühenden chemischen Industrie wuchs die Nachfrage nach schnelleren und dennoch genauen Analysemethoden. Die Messung des Volumens einer Reagenzlösung bekannten Gehaltes (Maßlösung) konnte vielfach eine gravimetrische Bestimmung ersetzen. Bei einer solchen Titration muss der zu bestimmende Stoff schnell und in eindeutiger Weise mit der Maßlösung reagieren. Das Ende der Reaktion muss erkennbar sein. Hierzu verwendet man häufig Farbindikatoren. Die Waage kam jetzt nur noch bei der Herstellung der Maßlösung zum Einsatz. Solche volumetrischen (titrimetrischen) Verfahren kamen bereits gegen Ende des 18. Jahrhunderts auf. Sie entwickelten sich aus halbquantitativen Probiermethoden beispielsweise zur Gütebestimmung von Weinessig. Hierbei gab man zu einer abgemessenen Essigprobe solangen Sodapulver hinzu, bis kein erneutes Aufschäumen (Kohlendioxidbildung) mehr auftrat. Je mehr Soda verbraucht wurde, desto besser war der Essig. Eine der ersten sehr genauen Titrationsverfahren war die Chloridbestimmung nach Gay-Lussac (Klarpunkttitration mit Silbernitratlösung). Weitere Verbreitung fanden Titrationen, als entscheidende praktische Verbesserungen vorgenommen wurden. So ermöglichte die Bürette mit Quetschhahn nach Mohr eine leichte und genaue Dosierung der Maßlösung. Im Laufe des 19. und 20. Jahrhunderts wurden viele unterschiedliche Reaktionstypen für die Titration nutzbar gemacht. Hierzu gehörten neben den schon länger bekannten Fällungs- und Säure-Base-Titrationen auch Redox- und Komplextitrationen.
Chromatographische Methoden
Der russische Botaniker Michail Semjonowitsch Zwet berichtete 1903, dass sich gelöste Stoffe durch Durchfließen einer mit einem Adsorptionsmittel gefüllten Säule trennen lassen. Das Verfahren fand erst in den 30er Jahren des 20. Jahrhunderts vermehrt Beachtung, führte dann aber zu einer großen Zahl von Verfahren, die für qualitative und quantitative Bestimmungen von zahlreichen Substanzen aus Gemischen geeignet sind: Papierchromatographie, Gaschromatographie, Hochdruckflüssigchromatographie, Gelpermeationschromatographie, Dünnschichtchromatographie, Ionenaustauschchromatographie, Elektrophorese.
Solche Verfahren revolutionierten die Analyse von komplexen Gemischen. Oftmals war erst durch eine chromatographische Methode eine umfassende Analyse möglich. In allen Fällen beschleunigte und verbilligte die Chromatographie die Arbeit der analytischen Labors und machte dadurch eine erhebliche Ausweitung von Lebensmittelkontrollen und Dopingkontrollen sowie genauere Prozessüberwachung zahlreicher Produktionsprozesse als Routinemaßnahme erst praktisch möglich.
Einen weiteren Qualitätssprung bedeutete in der zweiten Hälfte des 20. Jahrhunderts die Kombination chromatographischer Trennverfahren mit spektroskopischen Identifizierungsverfahren wie Massenspektrometrie, Infrarotspektroskopie und anderen.
Automatisierung von Analyseverfahren
Seit der Entwicklung der elektronischen Datenverarbeitung wurden Analyseverfahren mehr und mehr automatisiert. Dazu eignen sich besonders volumetrische, spektroskopische und chromatographische Verfahren. Die Automatisierung führte zu einer wesentlichen Kapazitätsausweitung der Analysenlabors und zu einer Senkung der Kosten. Dies hatte zur Folge, dass zu Kontroll- und Überwachungszwecken mehr Analysen durchgeführt werden konnten. Die Automatisierung von Analyseverfahren hat sehr wesentlich dazu beigetragen, Lebensmittelkontrollen, Dopingkontrollen, klinische Blut- und Gewebeuntersuchungen usw. auszuweiten und zu einem alltäglichen Kontrollinstrument zu machen. Auch in der Forschung können Dank der Automatisierung der Analysen wesentlich größere Probenserien analysiert werden und so sicherere Aussagen, beispielsweise über Abhängigkeiten von Wirkstoffgehalten in Pflanzen oder über mineralogische Zusammenhänge gemacht werden. Außerdem führte die Automatisierung durch präzisere Einhaltung von Bedingungen, besonders bei der Probenaufgabe, zu einer weiteren Verbesserung der Messgenauigkeit.
Die Entwicklung der Laborausstattung
Sowohl für die Möglichkeiten der Analytik als auch für die Herstellung von Substanzen im kleinen Maßstab spielte die Ausstattung der Labors eine wichtige Rolle. Zunächst standen zum Erhitzen nur kleine Holzkohleöfen zur Verfügung, die schwierig zu regulieren und umständlich zu handhaben waren. Mit der Einführung von Leuchtgas in den Städten und der Erfindung des Bunsenbrenners stand eine unkomplizierte und leicht zu regulierende Möglichkeit zum Erhitzen zur Verfügung. Dazu spielt die Erfindung der Vulkanisierung von Kautschuk durch Charles Goodyear eine wichtige Rolle, da hierdurch Gummischläuche als flexible Gasleitungen zur Verfügung standen. Immer wieder ermöglichten gerade Entwicklungen der Chemie die Weiterentwicklung der Laborausstattung, was dann wiederum zu einem weiteren Fortschritt der Chemie führte. Einen weiteren Schritt hin zu exakter Temperaturführung sind die elektrischen Heizpilze und thermostatisierte Wasserbäder, die ihren bisherigen Höhepunkt in einer computergesteuerten Reaktionsführung mittels Thermosensoren und gesteuerter elektrischer Heizung finden.
Glasgeräte waren ursprünglich dickwandig und klobig. Dies war ein wesentlicher Grund, warum für Analysen große Materialmengen benötigt wurden. Mit der Einführung der Gasflamme in die Glasbläserei und mit der Weiterentwicklung von Zusammensetzung der Gläser konnten Laborgeräte immer kleiner, dünnwandiger und in komplexeren Formen hergestellt werden. Die so entstehende Vielfalt von aus der Praxis entwickelten Geräten half sehr wesentlich dabei mit, die Analysenmengen zu verringern und für die Herstellung von Substanzen immer komplexere Prozesse praktisch durchführen zu können. Durch Einführung des Normschliffes für Glasgeräte in der zweiten Hälfte des 20. Jahrhunderts wurden die mittlerweile industriell hergestellten Einzelteile problemlos gegeneinander austauschbar und erlaubten den Aufbau von sehr komplexen, spezialisierten Versuchsanordnungen mit geringem zeitlichen Aufwand.
Immer mehr fanden Kunststoffe Eingang ins chemische Labor und erleichterten die Arbeit. Waren unzerbrechliche, chemikalienbeständige Gefäße im 19. Jahrhundert noch aus mit Paraffin getränkter Pappe, bestehen viele moderne Laborgeräte aus Polyethylen, Polypropylen, Polystyrol, Polycarbonat und, für besonders gute Beständigkeit gegen Säuren und Laugen sowie mit sehr leicht zu reinigender Oberfläche aus Teflon. Die Einführung von leichten, kostengünstig herzustellenden Geräten aus Kunststoff führte zur immer häufigeren Verwendung von Einweg-Geräten. Dadurch wurde die Gefahr der Verunreinigung mit Resten von früherem Arbeiten ausgeschaltet und die Zuverlässigkeit und Empfindlichkeit von Analysen weiter in die Höhe getrieben.
Mit dem Einzug von elektrischen Geräten in die Technik ab dem Beginn des 20. Jahrhunderts profitierte auch das chemische Labor von elektrischen Rührern, Schüttlern, Mühlen, Pumpen usw., die die Arbeit wesentlich erleichterten. Ein nächster Schritt sind gesteuerte Geräte, die im zeitlichen Ablauf programmiert werden können. Dies machte eine persönliche Überwachung, vor allem von lang dauernden Prozessen mit Parameteränderungen, verzichtbar.
Gesellschaftliche Reaktionen gegen das Eindringen der Chemie in jeden Bereich
Beginnend im 19. Jahrhundert wurde die Chemie in der Neuzeit ein immer bedeutenderer wirtschaftlicher und gesellschaftlicher Faktor. Die Rolle der Chemie, vor allem der Chemieindustrie, mit ihren Schattenseiten war immer wieder mit unterschiedlichen Schwerpunkten in der Diskussion. Auf der anderen Seite veränderte die Chemie durch neue Substanzen das äußere Erscheinungsbild von Menschen und Gebäuden, man denke etwa an Farben und Kunststoffe.
Arbeitssicherheit
Die erste gesellschaftliche Reaktion betraf die in der Anfangszeit schlimmen Arbeitsbedingungen in der chemischen Industrie, die zu schweren Erkrankungen von Chemiearbeitern und Arbeiterinnen führten. Nicht immer war dies auf Gleichgültigkeit von Unternehmern zurückzuführen, meist waren die Gefahren durch die neuen Stoffe noch unbekannt. Gegen Ende des 19. Jahrhunderts wurden Vorschriften zur Arbeitssicherheit erlassen, die die Gefahren verminderten. Dazu gehörten auch regelmäßige ärztliche Untersuchungen. Mit der Einführung immer besser geschlossener Prozesse und immer besserer persönlicher Sicherheitsausrüstung in der Industrie verminderten sich die Risiken durch das Einatmen, Verschlucken oder die Aufnahme durch die Haut erheblich.
Ein zweites Risiko in der chemischen Industrie ist das Unfall- und Brandrisiko, das immer noch gegeben ist. Durch immer besseren vorbeugenden Brandschutz, zu dem das immer tiefere chemische Wissen erheblich beiträgt, durch immer besser ausgebildete und ausgerüstete Werkfeuerwehren mit immer mehr chemischem Wissen konnte das Risiko immer weiter gedrückt, aber nie ganz ausgeschaltet werden, wie spektakuläre Chemieunfälle in den letzten Jahren zeigen. Chemieunfälle wie das durch Cyanid ausgelöste Fischsterben in der Theiß oder der gar die rund 8000 Toten (weitere 20.000 an den Spätfolgen) von Bhopal führten ebenso wie andere Unfälle zu heftigen Diskussionen über die Risiken einer chemischen Industrie.
Emissionen und Abfall
In der Anfangszeit der chemischen Industrie unterschätzte man das Potential der Umweltschädigung durch Abwässer und Emissionen mit der Abluft sehr stark. Der erste Schritt zu einer Verbesserung der Situation bestand in einer Erhöhung der Schornsteine, so dass sich die Schadstoffe über ein weiteres Gebiet in der Atmosphäre verteilen und so verdünnen konnten. Erst in der zweiten Hälfte des 20. Jahrhunderts begann allmählich ein Umdenken - nicht nur im Hinblick auf landwirtschaftlich ausgetragene Pestizide, privat emittierten Tabakrauch und überschüssige Waschmittel-Phosphate. Eine wachsende Umweltbewegung zwang die Industrie ab etwa 1970 zunehmend, Abwasser und Abluft zu reinigen und so die Schadstoff-Emissionen zu minimieren.
Biobewegung
Nachdem die chemische Industrie als Heilsbringer in der Landwirtschaft bis in die Mitte des 20. Jahrhunderts hochgelobt wurde und auch beachtliche Erfolge zur Ertragssteigerung vorweisen konnte, bildete sich etwa ab 1970 eine zunächst immer stärker werdende Bewegung, die in der Gründung der Partei der Grünen gipfelte. Diese Bewegung kämpfte gegen den immer stärker werdenden Anteil von synthetischen Substanzen der chemischen Industrie in der Landwirtschaft als Dünger, Wachstumsförderer, Tiermedikament, Schädlingsbekämpfungsmittel usw.
Die grüne Bewegung nahm sich auch der Nahrungsmittelherstellung an und prangerte nicht nur chemisch gestützte Pflanzen- und Tierproduktion an, sondern auch die Verwendung von künstlichen Stoffen als Bestandteile oder Zusatzmittel für Lebensmittel. Als Gegenreaktion großindustrielle Produktion in Landwirtschaft und Nahrungsmittelerzeugung mit starkem Einfluss chemischer Methoden und künstlicher Substanzen fordert die Ökobewegung eine Beachtung natürlicher Kreisläufe mit nur sanftem Eingriff des Menschen und den möglichst vollständigen Verzicht auf die Einbringung von künstlichen Substanzen in den biologischen Kreislauf.
Siehe auch
- Chemie in der Antike
- Chemie im Mittelalter
- Chemie in der Neuzeit
- James Riddik Partington, Chemiehistoriker
- Zyklon B
Literatur
Bücher
- Wilhelm Strube: „Der historische Weg der Chemie“, Band I, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1984 in 4. Aufl., ISBN ./., VLN 152-915/81/84
- Ernst F. Schwenk: „Sternstunden der Chemie. Von Johann Rudolph Glauber bis Justus von Liebig“, Verlag C.H. Beck, München 1998, ISBN 3-406-42052-4
- William H. Brock, Viewegs Geschichte der Chemie, Wiesbaden, 1997 ISBN 3540670335
- Heinz Haber: „Der Stoff der Schöpfung“, Rowohlt Taschenbuch Verlag, Reinbek bei Hamburg 1968, ISBN 3499166259
- J. R. Partington, A History of Chemistry, MacMillan, 1970 (Volume 1), 1961 (Volume 2), 1962 (Volume 3), 1964 (Volume 4)
- Lucien F. Trueb: Die chemischen Elemente. Ein Streifzug durch das Periodensystem. S. Hirzel Verlag, Stuttgart 2005, ISBN 3-7776-1356-8
- Michael Wächter: Stoffe, Teilchen, Reaktionen. Verlag Handwerk und Technik,Hamburg 2000, S.1-5,10+11 ISBN 3-582-01235-2
Aufsätze
- H. A. Staab: Hundert Jahre organische Strukturchemie, in: Angew. Chem. 1958, 70, 37–41; doi:10.1002/ange.1760700202.
- J. Weyer: Hundert Jahre Stereochemie - Ein Rückblick auf die wichtigsten Entwicklungsphasen, in: Angew. Chem. 1974, 86, 604–611; doi:10.1002/ange.19740861702.
- J. Weyer: Die Entwicklung der Chemie zu einer Wissenschaft zwischen 1540 und 1740, in: Berichte zur Wissenschaftsgeschichte 1 1978, 1/2, 113–121.
- C. Priesner: Zur Geschichte der makromolekularen Chemie, in: Chemie in unserer Zeit 1979, 13, 43–50; doi:10.1002/ciuz.19790130203.
- E. Renatus: Julius Quaglio (1833-1899) und die Geschichte des Periodensystems, in: Chemie in unserer Zeit 1983, 17, 96–102; doi:10.1002/ciuz.19830170305.
- Günther Wilke: Beiträge zur nickelorganischen Chemie. Angewandte Chemie 100(1), S. 189 – 211 (1988), ISSN 0044-8249
- W. A. Herrmann: 100 Jahre Metallcarbonyle. Eine Zufallsentdeckung macht Geschichte, in: Chemie in unserer Zeit 1988, 22, 113–122; doi:10.1002/ciuz.19880220402.
- F. Rex: Die Älteste Molekulartheorie. Zu Platons quasichemischem Gedankenspiel im Timaios (um 360 v. Chr.), in: Chemie in unserer Zeit 1989, 23, 200–206; doi:10.1002/ciuz.19890230604.
- E. Heilbronner, J. Jacques: Paul Havrez und seine Benzolformel, in: Chemie in unserer Zeit 1998, 32, 256–264; doi:10.1002/ciuz.19980320505
- D. Stoltzenberg: Fritz Haber, Carl Bosch und Friedrich Bergius - Protagonisten der Hochdrucksynthese, in: Chemie in unserer Zeit 1999, 33, 359–364; doi:10.1002/ciuz.19990330607.
- H. Kaden: Historie: 140 Jahre Poggendorff - das Werk und sein Begründer, in: Chemie in unserer Zeit 2006, 40, 212–213; doi:10.1002/ciuz.200690040.
- G. Boeck, R. Zott: Dmitrij Ivanovi Mendeleev (1834-1907): Zum 100. Todestag, in: Chemie in unserer Zeit 2007, 41, 12–20; doi:10.1002/ciuz.200700406
Wikimedia Foundation.