Absorption Distribution Metabolism Excretion

Absorption Distribution Metabolism Excretion

Die Pharmakokinetik beschreibt die Gesamtheit aller Prozesse, denen ein Arzneistoff im Körper unterliegt. Dazu gehören die Aufnahme des Arzneistoffes (Absorption), die Verteilung im Körper (Distribution), der biochemische Um- und Abbau (Metabolisierung) sowie die Ausscheidung (Exkretion). Ist zusätzlich vor der Absorption die Freisetzung (Liberation) des Arzneistoffes aus der Arzneiform von Bedeutung, wird auch die Abkürzung LADME für die Gesamtheit dieser Prozesse verwendet.

Als Begründer der Pharmakokinetik gilt der Kinderarzt Friedrich Hartmut Dost, der 1953 mit dem ersten Lehrbuch über die Pharmakokinetik Der Blutspiegel diese der klinischen Praxis und Forschung zugänglich machte. Grundlage seiner Überlegungen war die Erkenntnis, dass Dosisempfehlungen für Arzneimittel nicht einfach von Erwachsenen auf Kinder „heruntergerechnet“ werden dürfen. Aus diesen Grundüberlegungen entwickelte sich ein eigener Wissenschaftszweig, der heute in der Arzneimittelforschung ein eigenes Feld besetzt und aus der Arzneimittelentwicklung nicht mehr wegzudenken ist.

Inhaltsverzeichnis

Übersicht

Neben der Freisetzung (Liberation) aus der Darreichungsform und der Aufnahme des Arzneistoffes in den Körper (Resorption) sind auch seine Verstoffwechselung im Organismus (Metabolisierung) und seine Ausscheidung maßgeblich für die Konzentration am Wirkort. Die Abkürzung LADME fasst diese Vorgänge zusammen:

Freisetzung

Liegt der Arzneistoff nicht bereits in aufgelöster Form in der Arzneiform vor, so ist seine Freisetzung daraus der erste und oftmals geschwindigkeitsbestimmende Schritt im LADME Prozess. Je nach therapeutischer Zielsetzung werden für den Wirkstoff unterschiedliche Freisetzungsprofile angestrebt.

  • Indikationen, die im Rahmen einer Behandlung mit festen Arzneiformen einen raschen Wirkungseintritt erlauben oder sogar erfordern (z. B. akute Schmerzen), werden mit schnell freisetzenden Tabletten oder Brausetabletten behandelt. Die schnelle Freisetzung kommt durch den raschen physikalischen Zerfall der Arzneiform zustande. Zäpfchen setzen den Arzneistoff etwas langsamer frei, da sie erst im Rektum schmelzen müssen, haben aber Vorteile in der Anwendung, wenn Übelkeit und Erbrechen die Therapie begleiten.
  • Manche Indikationen erfordern eine modifizierte Abgabe des Arzneistoffes aus der Arzneiform, was nicht selten eine Herausforderung für seine technologische Formulierung (Galenik) darstellt. Durch die Wahl entsprechender Hilfsstoffe, die pharmakologisch selbst keine therapeutische Wirkung besitzen, und durch die Herstellungstechnologie lässt sich die Kinetik der Freisetzung steuern und damit die Wirkintensität und Wirkdauer des Arzneistoffes beeinflussen.
    • Eine verlangsamte Freisetzung (Retardierung) erlaubt die Verlängerung des Dosierungsintervalls und macht die Therapie anwendungsfreundlich (z. B. ist statt 3 × 1 Tablette nur 1 × 1 Retardtablette täglich erforderlich). Zudem schwanken die Plasmaspiegel weniger und werden stattdessen auf einem gleich bleibenden Niveau gehalten.
    • Eine verzögerte Freisetzung aus einer peroralen Darreichungsform ist z. B. notwendig, wenn der Wirkstoff instabil gegenüber Magensäure ist. Ein säurefester Überzug sorgt dann dafür, dass die Tablette oder Kapsel den Wirkstoff erst nach der Magenpassage im neutralen oder leicht alkalischen Milieu des Dünndarms frei gibt.
    • Therapeutische Systeme setzen den Arzneistoff besonders langsam und über einen langen Zeitraum kontrolliert frei. Sie kommen beispielsweise in Form von transdermalen Pflastern oder wirkstoffhaltigen Implantaten bzw. Inserten zum Einsatz.

Der Zusammenhang zwischen einer bestimmten Arzneiform und der Wirkung des enthaltenen Arzneistoffes ist Gegenstand der Biopharmazie.

Aufnahme

Unter Resorption versteht man die Aufnahme des Arzneistoffes vom Applikationsort in die Blutbahn. Je nach Arzneiform und Applikation geschieht dies vor allem über die Schleimhäute des Magen-Darm-Traktes (Tabletten, Säfte, Kapseln) einschließlich des Rektums (Zäpfchen) oder über die Haut (Salben, Cremes, Wirkstoffpflaster). Der Resorptionweg über die Alveolen wird in der Narkose mittels Inhalationsnarkotika genutzt. Bisher können nur wenige Arzneistoffe über die Nasenschleimhaut verabreicht werden (z. B. Desmopressin, Oxytocin).

Dem Resorptionsvorgang liegen folgende Mechanismen zugrunde:

Die Resorption wird durch zahlreiche Faktoren beeinflusst. Neben den chemisch-physikalischen Eigenschaften des Arzneistoffes sind besonders diese physiologischen Faktoren von Bedeutung:

  • Größe und Zustand der Resorptionsfläche
  • Durchblutung an der Resorptionsfläche
  • Kontaktzeit mit der Resorptionsfläche

Durchfallerkrankungen und der damit einhergehende beschleunigte Transport des Arzneistoffes durch den Magen-Darm-Trakt können aufgrund der knappen Kontaktzeit eine Resorptions- und Wirkminderung zur Folge haben (z. B. orale Kontrazeptiva, Antibabypille).

Verteilung

Sobald der Arzneistoff im Blutkreislauf zirkuliert, beginnt seine Verteilung. In der Pharmakokinetik versteht man darunter den Stofftransport zwischen verschiedenen Körperflüssigkeiten und Geweben. Treibende Kraft des Transportvorgangs ist das Konzentrationsgefälle zwischen den verschiedenen Verteilungsräumen. Der Transportvorgang ist reversibel, d. h. er erfolgt „hin“ als auch wieder „zurück“.

Die Verteilung ist abhängig von:

  • Physiologischen Gegebenheiten wie der Organ- bzw. Gewebedurchblutung, dem pH-Wert im Gewebe bzw. in der Körperflüssigkeit und der Durchlässigkeit der zu durchdringenden Membranen. Eine schwer durchdringbare Membran umgibt beispielsweise die Hirnkapillaren und den Liquorraum (Blut-Hirn-Schranke, Blut-Liquor-Schranke) und verhindert oder vermindert auf diese Weise zentrale Nebenwirkungen.

Eine spezielle Form der Verteilung stellt der enterohepatische Kreislauf dar: der im Blut gelöste Arzneistoff bzw. seine Stoffwechselprodukte verteilen sich beim Passieren der Leber in die Galle, welche in den Darm abgesondert wird. Von dort werden die Substanzen wieder zurück resorbiert in die Blutbahn. Sie zirkulieren unter Umständen mehrfach und recht lange.

Metabolismus

Ein Arzneistoff unterliegt im Körper an verschiedenen Orten biochemischen Um- und Abbauprozessen, deren Gesamtheit als Metabolismus bezeichnet wird. Ziel dieser Prozesse ist dabei die Verbesserung der Ausscheidung aus dem Körper. Man unterscheidet dabei Phase-I-Reaktionen (Funktionalisierung) und Phase-II-Reaktionen (Hydrophilisierung). Die Reaktionsprodukte dieser Reaktionen bezeichnet man als Metaboliten eines Arzneistoffes.

Zu den Reaktionen der Phase I gehören beispielsweise Oxidationsreaktionen, Reduktionsreaktionen und die Hydrolyse. Durch diese Reaktionen nimmt die Wirkung eines Arzneistoffes im Allgemeinen ab. In bestimmten Fällen ist jedoch auch eine Wirkverstärkung bzw. der Umbau zu Metaboliten mit anderen Wirkungen möglich, wodurch es zu Nebenwirkungen kommen kann. Darüber hinaus gibt es, wie bereits erwähnt, mit den sogenannten Pro-Drugs auch Arzneistoffe, die erst durch die Metabolisierung aus einer wirkungslosen Form ihre beabsichtigte Wirkung erhalten. Zu den Phase-II-Reaktionen zählen vor allem die Glucuronsäure-Konjugation, die Aminosäure-Konjugation, die Sulfatierung und die Acetylierung. Im Ergebnis dieser Reaktionen wird ein Arzneistoff hydrophiler und damit wasserlöslicher, wodurch die Ausscheidung beschleunigt wird.

Hauptort der Metabolisierung ist die Leber. Darüber hinaus finden Metabolisierungsreaktionen z. B. in den verschiedenen Schleimhäuten, im Darm und im Blutplasma statt. Während der Metabolisierung kann es zu Interaktionen zwischen verschiedenen gleichzeitig applizierten Medikamenten kommen. Dies ist beispielsweise dann möglich, wenn einer der beteiligten Arzneistoffe die Metabolisierungskapazität des Körpers auslastet, so dass die Metabolisierung eines zweiten Arzneistoffes verzögert wird. Dies führt für diesen Arzneistoff zu einem Anstieg der Wirkung. Solche Wechselwirkungen sind unter Umständen auch zwischen Medikamenten und bestimmten Inhaltsstoffen von Lebensmitteln möglich. Inhaltsstoffe von Grapefruit-Saft blockieren beispielsweise bestimmte Enzyme des Cytochrom-P450-Komplexes in der Leber. Dadurch wird der Abbau von vielen Medikamenten verzögert, so dass bei gleichzeitiger Einnahme von Grapefruit-Saft und entsprechenden Medikamenten deren Konzentration ansteigt, was zu Nebenwirkungen führen kann.

Auch die Wirkabnahme eines Medikaments bei längerer Einnahme ist auf die Metabolisierung zurückzuführen. In diesem Fall kommt es durch die wiederholte Einnahme zur sogenannten Enzyminduktion, einer verstärkten Bildung der an der Metabolisierung beteiligten Enzyme. Dadurch wird der betroffene Arzneistoff dann schneller abgebaut, wodurch seine Wirkdauer und -intensität, im Extremfall bis zur Wirklosigkeit, herabgesetzt werden. Erkrankungen der an der Metabolisierung beteiligten Organe, insbesondere der Leber, können aufgrund der verringerten Metabolisierung zu einem Wirkanstieg und damit zu Nebenwirkungen führen. Für viele Metabolisierungsprozesse sind auch genetische Unterschiede bekannt. Diese können beispielsweise für bestimmte Reaktionen zu einer Unterscheidung zwischen Schnell- und Langsammetabolisierern führen.

Ausscheidung

Die Ausscheidung (Exkretion) eines Arzneistoffes bzw. seiner Metaboliten aus dem Blutkreislauf erfolgt zum größten Teil über die Nieren und den Urin (renale Ausscheidung). Ein geringer Teil wird über die Gallenflüssigkeit in den Dünndarm und im Weiteren mit dem Stuhl ausgeschieden. Wird die wirksame Substanz anschließend aus dem Darm wieder resorbiert (Rückresorption), so spricht man vom enterohepatischen Kreislauf.

Von untergeordneter Bedeutung ist die Exkretion über Haut (Schweiß) oder Schleimhaut (Darmschleimhaut, intestinale Ausscheidung) sowie über die Lunge (pulmonale Ausscheidung). Die Exkretion von Arzneistoffen mit der Muttermilch kann zu Vergiftungserscheinungen beim gestillten Säugling führen.

Sonderfall Toxikokinetik

Die Toxikokinetik befasst sich mit der zeitlichen und quantitativen Konzentration eines Giftstoffes in verschiedenen Bereichen des Organismus („Kompartimenten“), z. B. in bestimmten Geweben.

Bei Vergiftungen helfen Kenntnisse über die Pharmakokinetik des Giftstoffes, die Folgen der Vergiftung sowie die Notwendigkeit und den Sinn einer Therapie abzuschätzen.

Neben den Faktoren des LADME-Konzeptes sind hier zusätzlich noch folgende Faktoren zu beachten:

Kenngrößen

Wichtige beschreibende Parameter in der Pharmakokinetik sind zum Beispiel Dosis, Verteilungsvolumen, Clearance, Bioverfügbarkeit, Plasmahalbwertszeit, Erhaltungsdosis.

Einflussgrößen

Einfluss auf das pharmakokinetische Verhalten eines Stoffes haben seine physikalisch-chemischen Eigenschaften und die biologischen Kenngrößen des Organismus.

Relevanz

Rolle der Pharmakokinetik im Rahmen der Arzneimittelzulassung

Genaue Kenntnisse zu allen genannten Prozessen sind essentieller Teil der für die Zulassung eines neuen Medikamentes notwendigen Antragsunterlagen. Entsprechende Daten werden in den jeweiligen Phasen der Entwicklung eines Medikamentes durch Studien gewonnen. Alle Prozesse des LADME beeinflussen den Konzentrations-Zeit-Verlauf und damit die Bioverfügbarkeit eines Medikamentes im Körper. Von Relevanz ist dies beispielsweise bei der Zulassung von Generika. Bei diesen ist vom Hersteller die sogenannte Bioäquivalenz zu demonstrieren, also die Vergleichbarkeit innerhalb bestimmter zulässiger Grenzen mit dem Originalpräparat hinsichtlich der Bioverfügbarkeit.

Therapeutische Aspekte

Die analytische Bestimmung der Arzneistoffkonzentration in Blut, Urin, Speichel und anderen Körperflüssigkeiten wird in der Therapie mit manchen Arzneimitteln angewendet, um die genaue Dosierung zu ermitteln und die Therapie zu verfolgen, insbesondere bei wiederholter und länger andauernder Therapie. Dies wird als Therapeutic Drug Monitoring bezeichnet.

Siehe auch

Literatur

  • Pharmacokinetics (Drugs and the pharmaceutical sciences). Milo Gibaldi, Donald Perrier, ISBN 0-8247-0295-6
  • Clinical Pharmacokinetics. Concepts and Applications. Malcolm Rowland, Thomas N. Tozer, ISBN 0-683-07404-0
  • Pharmakokinetik. Hartmut Derendorf, Thomas Gramatte, Hans G. Schäfer, ISBN 3-8047-1907-4
  • Ernst Mutschler, Gerd Geisslinger, Heyo K. Kroemer, Peter Ruth, Monika Schäfer-Korting: Arzneimittelwirkungen. Lehrbuch der Pharmakologie und Toxikologie. 9. Auflage. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 2008, ISBN 978-3-8047-1952-1
  • Klaus Aktories, Ulrich Förstermann, Franz Hofmann, Wolfgang Forth: Allgemeine und spezielle Pharmakologie und Toxikologie. Urban & Fischer bei Elsevier, München und Jena 2004, ISBN 3-437-42521-8
  • Peter Langguth, Gert Fricker, Heidi Wunderli-Allenspach: Biopharmazie. Wiley-VCH, Weinheim 2004, ISBN 3-527-30455-X
  • E. J. Ariëns: Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology, European Journal of Clinical Pharmacology 26 (1984) 663-668.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Liberation Absorption Distribution Metabolism Excretion — Die Pharmakokinetik beschreibt die Gesamtheit aller Prozesse, denen ein Arzneistoff im Körper unterliegt. Dazu gehören die Aufnahme des Arzneistoffes (Absorption), die Verteilung im Körper (Distribution), der biochemische Um und Abbau… …   Deutsch Wikipedia

  • Distribution (pharmacology) — Distribution in pharmacology is a branch of pharmacokinetics which describes the reversible transfer of drug from one location to another within the body. The distribution of a drug between tissues is dependent on permeability between tissues… …   Wikipedia

  • Drug metabolism — is the biochemical modification of pharmaceutical substances by living organisms, usually through specialized enzymatic systems. This is a form of xenobiotic metabolism. Drug metabolism often converts lipophilic chemical compounds into more… …   Wikipedia

  • Volume of distribution — The volume of distribution (VD) , also known as apparent volume of distribution, is a pharmacological term used to quantify the distribution of a medication between plasma and the rest of the body after oral or parenteral dosing. It is defined as …   Wikipedia

  • Pharmacology — A variety of topics involved with pharmacology, including neuropharmacology, renal pharmacology, human metabolism, intracellular metabolism, and intracellular regulation. Pharmacology (from Greek φάρμακον, pha …   Wikipedia

  • Bioavailability — In pharmacology, bioavailability (BA) is a subcategory of absorption and is used to describe the fraction of an administered dose of unchanged drug that reaches the systemic circulation, one of the principal pharmacokinetic properties of drugs.… …   Wikipedia

  • AURA — Autoradiogramm eines Sagittalschnitts eines Rattenembryos. Die Markierung erfolgte mit Oligonukleotid Sequenzen, die mit 35S d …   Deutsch Wikipedia

  • Autoradiografie — Autoradiogramm eines Sagittalschnitts eines Rattenembryos. Die Markierung erfolgte mit Oligonukleotid Sequenzen, die mit 35S d …   Deutsch Wikipedia

  • Autoradiogramm — eines Sagittalschnitts eines Rattenembryos. Die Markierung erfolgte mit Oligonukleotid Sequenzen, die mit 35S d …   Deutsch Wikipedia

  • Clearance (medicine) — In medicine, the clearance is a measurement of the renal excretion ability. Although clearance may also involve other organs than the kidney, it is almost synonymous with renal clearance or renal plasma clearance. Each substance has a specific… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”