Endliche Reihe

Endliche Reihe

In der Mathematik ist eine (unendliche) Reihe eine Folge, deren Glieder (Partialsummen) als Summen der ersten n Glieder einer anderen Folge gegeben sind.

Inhaltsverzeichnis

Nomenklatur

Aus jeder Folge \left(a_i\right) kann man eine Reihe \left(s_n\right) konstruieren mittels

s_n = a_0 + a_1 + \ldots + a_n.

Wir verwenden als Indizes für die Glieder von Folge und Reihe in diesem Artikel die natürlichen Zahlen einschließlich der Null; in manchen Anwendungen ist es üblich, die Null auszuschließen. Mit Hilfe des Summenzeichens können die einzelnen Glieder der Reihe auch abgekürzt als

s_n = \sum_{i=0}^n a_i

geschrieben werden; sie werden auch Partialsummen der Folge (ai) genannt. Wenn (ai) und damit auch (sn) für alle nichtnegativen ganzen Indizes i bzw. n definiert sind, spricht man von einer unendlichen Reihe. Wenn der Grenzwert der Folge der Partialsummen

 S = \lim_{n\rightarrow \infty}s_n = \lim_{n\rightarrow \infty} \left( \sum_{i=0}^n a_i \right)

existiert, sagt man, die Reihe konvergiert; den Grenzwert S nennt man die Summe der Reihe oder den Wert der Reihe. Mit Hilfe des Summenzeichens kann diese Summe auch abgekürzt als

 S = \sum_{i=0}^\infty a_i

geschrieben werden.

Eine Reihe (sn) heißt divergent, wenn sie nicht konvergiert. Sie heißt bestimmt divergent oder uneigentlich konvergent, wenn die Teilsummen (sn) gegen -∞ oder +∞ streben. Andernfalls heißt die Reihe unbestimmt divergent; dabei kann sie Häufungspunkte haben oder auch nicht.

Mit verschiedenen Konvergenzkriterien lässt sich feststellen, ob eine Reihe konvergiert.

Beispiele

Für einige einfache endliche Reihen kann man die Summe explizit berechnen, beispielsweise für arithmetische Reihen wie

\sum_{k=1}^{n}{k} = 1+2+\cdots+n = \frac{n(n+1)}{2}

oder die Summe der ersten n Quadrate lautet

\sum_{k=1}^{n}{k^2} = 1+2^2+\cdots+n^2 = \frac{n(n+1)(2n+1)}{6}.

Ein Beweis solcher Formeln kann z. B. über vollständige Induktion erfolgen. Es gibt jedoch auch konstruktive Methoden, Reihen explizit zu summieren: Eulersche Summenformel, Teleskopsummen, Summation und Umordnung bekannter Reihen. Weitere solche Summationsformeln finden sich in der Formelsammlung Algebra.

Eine weitere klassische Reihe ist die geometrische Reihe, der Name ergibt sich aus der geometrischen Folge (an = qn für n \in \mathbb{N}). Die unendliche geometrische Reihe ist also:

s = \sum_{n=0}^\infty q^n.

Weitere Beispiele endlicher Reihen findet man im Artikel Addition.

Eine spezielle geometrische Reihe ist

s = \sum_{n=0}^\infty \frac{1}{2^n} = 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots

Diese Schreibweise bezeichnet nach der oben gegebenen Darstellung den Grenzwert der Folge

1,\ \frac{3}{2},\ \frac{7}{4},\ \frac{15}{8},\ \ldots

Man kann die Konvergenz dieser Reihe auf der Zahlengeraden visualisieren: Stellen wir uns eine Linie mit der Länge zwei vor, auf der aufeinanderfolgende Abschnitte mit den Längen 1, 1/2, 1/4, usw. markiert sind. Es gibt auf dieser Linie immer noch Platz für einen weiteren Abschnitt, da immer noch so viel Platz ist, wie der letzte Abschnitt lang war: Wenn wir die Strecke 1/2 markiert haben, haben wir insgesamt 3/2 verbraucht, es bleiben also noch 1/2 übrig. Wenn wir nun 1/4 wegstreichen, bleibt ein weiteres 1/4 übrig, etc. Da das „Reststück“ beliebig klein wird, ist der Grenzwert gleich 2.

Konvergente geometrische Reihen sind auch ein Gegenstand der Paradoxa von Zenon.

Ein Beispiel für eine divergente Reihe mit mehreren Häufungspunkten ist die Summe über die Folge +1,-1,+1,-1,… Die Reihe wechselt zwischen den Werten 1 und 0 (die Folge hingegen wechselt zwischen 1 und −1).

Konvergenzkriterien

Im Folgenden seien die Zahlen an stets reelle oder komplexe Zahlen, und die Reihe S definiert als

S = \sum_{n=0}^\infty a_n.

Zum Beweis der Konvergenz dieser Reihe gibt es diverse Konvergenzkritierien, die teils die bedingte, teils die stärkere absolute Konvergenz zeigen:

Notwendige Bedingung

Wenn die Reihe S konvergiert, dann konvergiert die Folge (an) der Summanden gegen 0 für n\rightarrow \infty. Die Umkehrung ist nicht allgemeingültig (ein Gegenbeispiel ist die harmonische Reihe).

Majorantenkriterium

Wenn alle Glieder an der Reihe S nichtnegative reelle Zahlen sind, S konvergiert und für alle n

a_n\geq |b_n|

mit reellen oder komplexen Zahlen bn gilt, dann konvergiert auch die Reihe

T = \sum_{n=0}^\infty b_n

absolut, und es ist |T| ≤ S.

Minorantenkriterium

Wenn alle Glieder an der Reihe S nichtnegative reelle Zahlen sind, S divergiert und für alle n gilt

a_n\leq b_n

mit nichtnegativen reellen Zahlen bn gilt, dann divergiert auch die Reihe

\sum_{n=0}^\infty b_n.
Quotientenkriterium

Wenn eine Konstante C < 1 und ein Index N existiert, sodass für alle nN gilt

 \left| \frac{a_{n+1}}{a_n} \right| \le C,

dann konvergiert die Reihe S absolut.

Wurzelkriterium

Wenn eine Konstante C < 1 und ein Index N existiert, sodass für alle nN gilt

\sqrt[n]{|a_n|} \le C,

dann konvergiert die Reihe S absolut.

Integralkriterium

Ist f: [1, \infty] \to [0, \infty] eine nichtnegative, monoton fallende Funktion mit

f(n) = an für alle n,

dann konvergiert S genau dann, wenn das Integral

\int_1^\infty f(x) dx

existiert.

Leibniz-Kriterium

Eine Reihe der Form

S = \sum_{n=0}^\infty (-1)^n a_n

mit nichtnegativen an wird alternierende Reihe genannt. Eine solche Reihe konvergiert, wenn die Folge an monoton gegen 0 konvergiert. Die Umkehrung ist nicht allgemeingültig.

Beispiele

  • Die Teleskopreihe \sum_{n=1}^\infty (b_n-b_{n+1}) konvergiert genau dann, wenn die Folge bn für n\to\infty gegen eine Zahl L konvergiert. Der Wert der Reihe ist dann b1L.

Reihen von Funktionen

Anstatt Folgen von Zahlen kann man auch Folgen von Funktionen betrachten und entsprechend Reihen definieren. Hier kommt zur Frage der Konvergenz noch die nach den Eigenschaften der Grenzfunktion hinzu. Umgekehrt kann man fragen, durch welche Reihe sich eine Funktion darstellen lässt. So eine Darstellung nennt sich Reihenentwicklung.

Potenzreihen

Einige wichtige Funktionen können als Taylorreihen dargestellt werden. Diese sind bestimmte unendliche Reihen, in denen Potenzen einer unabhängigen Variable vorkommen. Solche Reihen werden allgemein Potenzreihen genannt. Werden auch negative Potenzen der Variablen zugelassen, spricht man von Laurentreihen.

Fourierreihen

Als Fourierreihe einer Funktion bezeichnet man ihre Entwicklung nach trigonometrischen Funktionen sin(nx) und cos(nx) (n = 0,1,2,3,...).

Dirichletreihen

Als Dirichletreihe bezeichnet man eine Entwicklung

F(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^s}, mit s=\sigma+it \in \mathbb{C}.

Ein wichtiges Beispiel ist die Riemannsche Zetafunktion

\zeta(s)=\sum_{n=1}^{\infty} \frac1{n^s}, mit \operatorname{Re}\,s&amp;gt;1.

Literatur

  • K. Knopp: Theorie und Anwendung der unendlichen Reihen. Berlin 1996. ISBN 3-540-59111-7

Wikimedia Foundation.

Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • endliche Reihe — baigtinė eilutė statusas T sritis fizika atitikmenys: angl. finite series vok. endliche Reihe, f rus. конечный ряд, m pranc. série finie, f …   Fizikos terminų žodynas

  • Reihe (Gruppentheorie) — In der Gruppentheorie, einem Teilgebiet der Mathematik, werden gewisse Reihen, Ketten oder auch Türme von Untergruppen, bei denen jede Untergruppe in ihrer Nachfolgerin enthalten ist (aufsteigende Reihen) oder umgekehrt (absteigende Reihen),… …   Deutsch Wikipedia

  • Reihe — Rang; Warteschlange; Schlange; Abfolge; Sequenz; Folge; Aufeinanderfolge; Rangfolge; Serie; Reihenfolge; Zusammenstellung; Gruppe; …   Universal-Lexikon

  • Endliche von-Neumann-Algebra — Die hier vorgestellte Typklassifikation teilt die in der Mathematik untersuchten von Neumann Algebren in Klassen ein, die man Typ nennt. Diese auf Francis J. Murray und John von Neumann zurückgehende Klassifizierung beruht auf einer Analyse der… …   Deutsch Wikipedia

  • Reihe (Mathematik) — In der Mathematik ist eine (unendliche) Reihe eine Folge, deren Glieder (Partialsummen) als Summen der ersten n Glieder einer anderen Folge gegeben sind. Unendliche Reihen sind ein grundlegendes Instrument der Analysis. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Geometrische Reihe — Geometrische Reihen sind spezielle mathematische Reihen. Eine geometrische Reihe ist die Reihe einer geometrischen Folge. Bei einer geometrischen Folge ist der Quotient zweier benachbarter Folgenglieder konstant. Ein Startwert der geometrischen… …   Deutsch Wikipedia

  • Unendliche Reihe — In der Mathematik ist eine (unendliche) Reihe eine Folge, deren Glieder (Partialsummen) als Summen der ersten n Glieder einer anderen Folge gegeben sind. Inhaltsverzeichnis 1 Nomenklatur 2 Beispiele 3 Konvergenzkriterien 3.1 Beispiele …   Deutsch Wikipedia

  • Arithmetische Reihe — Arithmetische Reihen sind spezielle mathematische Reihen. Eine arithmetische Reihe ist die Folge, deren Glieder die Summe der ersten n Glieder (den Partialsummen) einer arithmetischen Folge sind. Arithmetische Reihen sind im allgemeinen divergent …   Deutsch Wikipedia

  • Fourier-Reihe — Als Fourierreihe (nach Jean Baptiste Joseph Fourier) einer periodischen Funktion f(x), die abschnittsweise stetig ist, bezeichnet man deren Entwicklung in eine Funktionenreihe aus Sinus und Kosinusfunktionen. Die Basisfunktionen der Fourierreihe… …   Deutsch Wikipedia

  • Stirling-Reihe — Die Stirling Formel ist eine mathematische Formel, mit der man für große Fakultäten Näherungswerte berechnen kann. Sie ist benannt nach dem Mathematiker James Stirling. Inhaltsverzeichnis 1 Grundlegendes 1.1 Herleitung der ersten beiden Glieder 2 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”